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ABSTRACT
This chapter describes a framework to synthesize provably stable local Volt/Var controllers
for distributed energy resources (DERs) in power distribution grids (DGs). The goal is
to control the reactive power injections of DERs to improve the system performance as
quantified by a generic optimal reactive power flow (ORPF) problem. To achieve this,
we jointly design for each DER the control function, which prescribes the reactive power
update rule, and the equilibrium function, which approximates the ORPF solutions from
local measurements of voltages and powers. We provide conditions on the equilibrium
functions and the control parameters ensuring the stability of the closed-loop system. In
particular, we discuss the trade-offs between each set of conditions accounting for practical
considerations, like fully exploiting the DERs’ generation capabilities and reducing the
optimality gap. These conditions are then translated into learning constraints on the neural
networks’ parameters that are enforced in the training phase. We validate our framework
with numerical simulations on the IEEE 37-bus network and through a comparison with
an optimized version of standard piece-wise linear control rules.
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1.1 INTRODUCTION

Environmental and economic factors are promoting the deployment of DERs
on DGs, leading to opportunities for improving power system performance and
reducing greenhouse gas emissions. However, DERs’ uncoordinated power in-
jections pose challenges to system stability and operation, and may result in large
voltage variations and frequency deviations. Exploiting the flexibility of their
power electronic interface, DERs have the capability to provide ancillary ser-
vices and in particular to perform Volt/Var control, i.e., to regulate the reactive
power outputs to provide voltage regulation. This chapter provide an overview of
our efforts [1–3] to realize this potential by synthesizing a framework that does
not necessitate access to global information or tight requirements on communi-
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cation among DERs. We combine smart decision making at the local level with
machine learning techniques to propose local Volt/Var controllers incorporating
optimality considerations and rigorous performance guarantees.

Literature Review

Volt/Var strategies aim to keep voltages within safe preassigned limits by having
generators inject reactive power. The literature provides a variety of options for
voltage regulation. In classic approaches, generators are controlled in an open
loop fashion, precisely, reactive power outputs are computed by the system oper-
ator as solutions of optimal power flow (OPF) problems and then dispatched to
the generators. OPF problems can be tackled using efficient solvers, e.g., [4–6].
The high penetration of DERs and the increased variability of DGs call for solv-
ing several OPF problems within a limited time frame, which poses significant
challenges on online computational capabilities and the communication infras-
tructure. As a way of bypassing them, the introduction of learning techniques to
obtain fast (approximate) OPF problems solutions has been motivated, e.g. [7,8],
to mention a few. A graph neural network leveraging the connectivity of the
power system is trained to infer AC-OPF solutions in [9]. In [10], a DNN is
trained to fit not only OPF minimizers, but also their sensitivities with respect
to the problem inputs. Once trained, the inference time for these approaches
when presented with a new input is minimal. Nevertheless, in these approaches,
(approximate) solutions of an OPF problem can be computed in general only
if information from all the grid buses is available. Specifically, all the load
demands and the generators’ generation limits must be known. This requirement
is most of the time prohibitive for actual DGs. Indeed, not all the buses are
monitored in real time, individual loads are unlikely to announce their demand
profiles in advance, and the availability of small size generators is hard to predict.

Closed-loop strategies instead use measurements to compensate missing grid
information. Since future DGs will host a massive number of controllable de-
vices, decentralized approaches look more suitable for practical applications.
Decentralized strategies can be grouped into two main categories. The first is
the class of distributed algorithms, where agents cooperate and exchange infor-
mation with peers. Distributed algorithms can be designed to exactly solve a
given OPF problem, see, e.g., [11]. This kind of schemes are often referred to as
feedback-based optimization controllers and steer the network toward the OPF
solutions by mean of the cyclical alternation of sensing, communication, and
actuation [12–14]. Nevertheless, distributed strategies require a reliable real-
time communication network satisfying strict requirements, e.g., every agent
has to be able to communicate with its neighbors in the power grid [12], which
may be difficult to satisfied in practice for DGs. The second is the class of
local algorithms, where each agent makes decisions based only on information
available locally. In local schemes, reactive power compensations are adjusted
based merely on measurements taken locally. Even though pertinent standards
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allow DERs to provide reactive power compensations following static Volt/Var
control rules, see IEEE standard 1547 [15], a number of options for local voltage
regulation have been proposed [12,16–18]. Exploiting only limited information,
local schemes feature intrinsic performance limitations due to their lack of coor-
dination, e.g., they might fail to regulate voltages even if the overall generation
resources are enough [19].

To enhance the performance of local schemes and to reduce the gap with
distributed and/or optimal controllers, a recent research direction aims to design
data-driven and learning-based control rules leveraging data from the grid. For
instance, utilities have available an enormous amount of historical consumption
and generation data retrieved from smart meters deployed in DGs. The work [20]
proposes to learn the local controller by taking as an input both voltages and
active power setpoints. The work [21] design piecewise linear control functions
once set the number of break points, whereas in [22] a framework for tuning the
parameters of standard piecewise linear local voltage regulators is proposed. The
aforesaid works provide interesting insights on learning Volt/Var rules, but they
do not assess the system stability and thus are not straightforwardly applicable
in actual grids. For this reason, characterizing the system stability has become a
priority. In the context of frequency control, [23,24] seeks to explicitly engineer
the neural network structure to integrate the stability requirement. In the field of
Volt/Var control field, reinforcement learning-based control schemes ensuring
the system stability are proposed in [25] and [26]. Also, [27,28] optimize the
local Volt/Var control schemes based on system forecasts and guaranteeing the
grid stability.

What is Covered in this Chapter

This chapter describes a Volt/Var control framework that tackles the challenges
described above. We provide an overview of our results in [1–3] combining
control and machine learning techniques to design provably stable local Volt/Var
controllers that steer the system toward efficient configurations. In our approach,
efficient configurations correspond to equilibrium points that approximate the
solutions of optimal reactive power flow (ORPF) problem, i.e., particular in-
stances of the OPF problem in which the goal is to optimize the generator’s
reactive power injections. The control framework is composed of two main
elements: the equilibrium functions and the control functions. The equilibrium
function describes possible system equilibrium points and map local measure-
ments into approximation of ORPF solutions. Equilibrium functions are learned
from historical data. The control function represents an incremental algorithm
in which the reactive power is updated as a convex combination of the previous
power setpoint and the actual value of the equilibrium function.

The properties of the equilibrium function play a key role in determining
the stability of the dynamics described by the control function. In this chapter,
we discuss how to design equilibrium functions to improve the performance of
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the local control schemes and guarantee the system stability. We look at two
types of equilibrium functions depending on their arguments. First, we consider
equilibrium functions that take as an input voltage measurements. Second, with
the aim of reducing the optimality gap with respect to the centralized solution,
we introduce equilibrium functions that depend not only on voltage magnitudes
but also on reactive power injections, and can be written in a separable way.
We provide various conditions ensuring the asymptotic stability of the control
scheme. These conditions take the form of slope constraints on the equilibrium
functions. One set of conditions requires coupling slope constraints on the
functions of voltages and functions of reactive powers. Another set of conditions
requires only slope constraints on the functions of reactive powers and decreasing
functions of voltages. Given these conditions ensuring the system stability, our
framework provides a way to train the equilibrium functions that meet them using
historical data offline. The online implementation of the local control schemes is
then guaranteed to steer the network towards the desired configuration described
by the equilibrium functions, leading to significantly optimized performance.

Notation
The set of real and complex numbers are represented as R and C, respectively.
Matrices and column vectors are denoted with upper and lowercase boldface
letters; calligraphic symbols are reserved for sets. Given a vector a (a diagonal
matrix A), its 𝑛-th (diagonal) entry is denoted by 𝑎𝑛 (𝐴𝑛). The symbol (·)⊤
stands for transposition, and 1, 0, I denote vectors of all ones and zeros and
identity matrix with appropriate dimensions, respectively. Operators ℜ(·) and
ℑ(·) extract the real and imaginary parts of a complex-valued argument, and act
element-wise. With a slight abuse of notation, we use | · | to denote the absolute
value for real-valued arguments, the magnitude for complex-valued arguments,
and the cardinality when the argument is a set. ∥ · ∥ represents the Euclidean
norm. Given a matrix A with real eigenvalues, 𝜆max (A) and 𝜆min (A) represent
its largest and smallest eigenvalue, respectively. For any matrix B, it holds that
∥B∥ =

√︁
𝜆max (B⊤B).

1.2 GRID MODELING AND PROBLEM FORMULATION

Here, we describe the mathematical model of distribution grids and formulate
the problem of interest.

1.2.1 Grid Modeling

A radial single-phase (or a balanced three-phase) DG having 𝑁 + 1 buses can be
modeled by an undirected tree graph G = (N ,L) rooted at the substation. Each
node in the set N = {0, 1, . . . , 𝑁} is associated with an electric bus; each edge
in the set E is associated with a power line. The substation, labeled as node 0, is
modeled as an ideal voltage source imposing the nominal voltage of 1 p.u. The
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power grid state is fully described by the following variables:
• 𝑢𝑛 ∈ C is the voltage phasor at bus 𝑛 ∈ N ;
• 𝑣𝑛 := |𝑢𝑛 | ∈ R is the voltage magnitude at bus 𝑛 ∈ N ;
• 𝑖𝑛 ∈ C is the injected current phasor at bus 𝑛 ∈ N ;
• 𝑠𝑛 = 𝑝𝑛 + 𝑖𝑞𝑛 ∈ C is the nodal complex power injection at bus 𝑛 ∈ N ;
𝑝𝑛, 𝑞𝑛 ∈ R denote the active and the reactive power injections, respectively.
We assume that if powers are injected into (absorbed from), then they have
positive (negative) values, i.e., 𝑝𝑛, 𝑞𝑛 ≥ 0 (𝑝𝑛, 𝑞𝑛 ≤ 0).

The vectors u, i, s ∈ C𝑁 collect the complex voltages, currents, and complex
powers of buses 1, 2, . . . , 𝑁 , and vectors v, p, q ∈ R𝑁 collect their voltage
magnitudes, and active and reactive power injections. Let 𝑧𝑒 ∈ C and 𝑦𝑒 =

𝑧−1
𝑒 ∈ C be the impedance and admittance of line 𝑒 = (𝑚, 𝑛) ∈ E, respectively.

The network bus admittance matrix Y ∈ C(𝑁+1)×(𝑁+1) can be expressed as
Y = Y𝐿 + diag(y𝑇 ), where

(Y𝐿)𝑚𝑛 =


−𝑦 (𝑚,𝑛) if (𝑚, 𝑛) ∈ E, 𝑚 ≠ 𝑛,

0 if (𝑚, 𝑛) ∉ E, 𝑚 ≠ 𝑛,∑
𝑘≠𝑛 𝑦 (𝑘,𝑛) if 𝑚 = 𝑛,

and the vector y𝑇 collects the shunt components of each bus. Y is a symmetric
matrix, whereas Y𝐿 is a complex Laplacian matrix satisfying Y𝐿1 = 0. We
partition the bus admittance matrix to obtain

Y =

[
𝑦0 y⊤0
y0 Ỹ

]
,

where 𝑦0 ∈ C, y0 ∈ C𝑁 , and Ỹ ∈ C𝑁×𝑁 . It can be proved that Ỹ is invertible
when the network is connected [29]. By defining Z̃ := Ỹ−1 and û := Z̃y0, the
power flow equations read

u = Z̃i + û, (1.1a)
𝑢0 = 1, (1.1b)
𝑖0 = 1⊤i, (1.1c)

𝑢𝑛𝑖𝑛 = 𝑝𝑛 + 𝑗𝑞𝑛, (1.1d)

where 𝑖𝑛 is the complex conjugate of 𝑖𝑛. The Kirchoff laws are captured by
equation (1.1a); equations (1.1b) and (1.1c) come from the fact that the substation
is the slack bus. Finally, equation (1.1d) provides the relation among voltages,
currents, and powers. Even though voltages and powers are related by the
nonlinear power flow equations (1.1), using a first-order Taylor expansion and
defining R̃ := ℜ(Z̃) and X̃ := ℑ(Z̃) ∈ R𝑁×𝑁 , we can approximate [12] the
power flow equations as

v = R̃p + X̃q + 1. (1.2)
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Indeed, it is common to rely on linearizations of the power flow equations to
study the control rule stability properties, e.g., see [13,14,17].

In this chapter, we assume that buses belonging to the subset C ⊆ N , with
|C| = 𝐶, are equipped with DERs. Every bus hosting a DER corresponds to a
smart agent provided with some computational and sensing capabilities, i.e., it
can measure its voltage magnitude. We will refer to buses in C as generators
and to the remaining nodes in the set L = N \ C as loads. For convenience,
we partition reactive powers and voltage magnitudes by grouping together the
nodes belonging to the load and generation sets,

q =

[
q⊤
C q⊤

L

]⊤
, v =

[
v⊤C v⊤L

]⊤
.

The matrices R̃ and X̃ can be partitioned as well, yielding

R̃ =

[
R RL

R⊤
L RLL

]
, X̃ =

[
X XL

X⊤
L XLL

]
,

with R,X ≻ 0, see [17]. Since the main goal is to present a framework for
the design of Volt/Var schemes, we will assume that the variables p, qL are
not controlled. Using (1.2), we can express voltage magnitudes as functions
exclusively of qC ,

v(qC) =
[

X
X⊤

L

]
qC + v̂, (1.3)

where

v̂ =

[
v̂C
v̂L

]
=

[
XL

XLL

]
qL + R̃p + 1.

We point out that, although we employ the linearized power flow model in
our stability analysis, the proposed algorithms can be implemented for the full
nonlinear model. In fact, our simulations below use an exact AC power flow
solver.

1.2.2 Problem Formulation

The deployment of DERs affects the DG operation, e.g., by introducing voltage
quality issues. Indeed, sudden generation drops or excessive generation could
have the voltages step outside desired operational limits. Since DERs are able to
provide ancillary services, reactive power injection can be used to regulate the
voltage profiles. Ideally, a system operator would like DER injections to be the
solutions of an optimal reactive power flow (ORPF) problem, for which several
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ORPF problem formulation exist. In this chapter, we consider

q★C (p, qL) := arg min
qC

𝑓 (qC) (1.4a)

s.t. (1.1a) − (1.1d)
vmin ≤ v ≤ vmax (1.4b)
qmin ≤ qC ≤ qmax (1.4c)

where qmin, qmax ∈ R𝐶 are the minimum and maximum DERs’ reactive power
injections; vmin, vmax ∈ R𝑁 are the desired voltage lower and upper bounds
on all the network buses; and 𝑓 : R𝐶 → R is the cost function of interest.
The minimizer depends on the uncontrolled variables p and qL , which appear
implicitly in the constraint (1.4b) via equation (1.1). Note that our framework
can be adapted to OPRF problem instances different from (1.4). We assume that
problem (1.4) admits a unique solution. When that is not the case, q★C (p, qL)
can be chosen among the set of minimizers. For convenience, we denote the
feasible set of reactive power injections as Q := ×𝑛∈CQ𝑛, with Q𝑛 = {𝑞𝑛 :
𝑞min,𝑛 ≤ 𝑞𝑛 ≤ 𝑞max,𝑛}.

Solving (1.4) is challenging due to the non-convexity of (1.1). The literature
proposes several methods for solving ORPF problems exploiting, e.g., convex re-
laxations [4], linearized power flow equations [13], distributed optimization [11],
and learning-based approaches [30]. However, solving (1.4) inevitably requires
the knowledge of the network-wide quantities (p, qL), centrally or via peer-to-
peer communication. This means that, when a reliable real-time communication
network is not present, the optimal q★C cannot be directly computed.

Our proposed control framework is inspired by the ongoing efforts [12,16–
18] on local Volt/Var control rules and the recently reported success [7–10]
of neural-network-based surrogates for OPF. Historical data are used to learn
functions that map local measurements to (approximate) solutions of the ORPF
problem (1.4). Specifically, for each agent 𝑛 ∈ C, we aim to learn a function

𝛾𝑛 : R × Q𝑛 → Q𝑛, (𝑣𝑛, 𝑞𝑛) ↦→ 𝛾𝑛 (𝑣𝑛, 𝑞𝑛)

that takes as inputs the voltage 𝑣𝑛 and reactive power 𝑞𝑛, and outputs the ORPF
solution approximation. We consider then local controllers whose equilibrium
points are determined by the functions {𝛾𝑛}𝑛∈C . For this reason, the {𝛾𝑛}𝑛∈C
are hereafter called equilibrium functions. Precisely, we propose the reactive
power update

𝑞𝑛 (𝑡 + 1) = (1 − 𝜖)𝑞𝑛 (𝑡) + 𝜖𝛾𝑛 (𝑣𝑛 (𝑡), 𝑞𝑛 (𝑡)), 𝑛 ∈ C (1.5)

with 𝜖 ∈ [0, 1]. The new reactive power setpoint is a convex combination
between the previous one and the actual value of the equilibrium function.
Assuming that 𝑞𝑛 (0) ∈ Q𝑛, 𝑛 ∈ C, it trivially follows that q𝐶 (𝑡) ∈ Q, 𝑡 ≥ 0, i.e.,
the reactive power injection is always feasible. Let q♯C be an equilibrium point
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of (1.5), i.e.,

𝑞
♯
𝑛 = 𝛾𝑛 (𝑣♯𝑛, 𝑞♯𝑛) (1.6a)

𝑣
♯
𝑛 = 𝑣𝑛 (q♯C). (1.6b)

Notice that (𝛾𝑛 (𝑣♯𝑛, 𝑞♯𝑛), 𝑣♯𝑛) is a point of the graph of 𝛾𝑛, i.e., equilibria of (1.5)
are ORPF approximate solutions. It remains now to understand the conditions
that ensure the convergence of (1.5).

The stability analysis we provide assumes that uncontrolled variables, i.e.,
p and qL , take arbitrary but fixed values in time. This is motivated by the
assumption that the control will act on a fast timescale in which (p, qL) can
be considered constant. Also, our analysis employs the power flow approxima-
tion (1.2). That is, after collecting the functions {𝛾𝑛}𝑛∈C in the vector-valued
function 𝜸, we study the stability of

qC (𝑡 + 1) = (1 − 𝜖)qC (𝑡) + 𝜖𝜸(vC (𝑡), qC (𝑡)) (1.7a)
vC (𝑡 + 1) = XqC (𝑡 + 1) + v̂C . (1.7b)

We present the stability results for the case when the equilibrium function de-
pends only on local voltage in Section 1.3, and generalize the treatment to the
case when the equilibrium function depends not only on local voltage but also on
local reactive power in Section 1.4. A learning framework for synthesizing local
Volt/Var controllers with stability guarantees from data is given in Section 1.5.

1.3 EQUILIBRIUM FUNCTIONS DEPENDING ONLY ON VOLTAGE

In this section we consider the scenario where the equilibrium function only
depends on local voltage, which is the case for most of existing works in the
literature, see e.g. [1,2,18]. This means that

𝛾(𝑣𝑛, 𝑞𝑛) = 𝜙𝑛 (𝑣𝑛),

for each 𝑛 ∈ C. The function 𝜙𝑛 is Lipschitz with the Lipschitz constant
𝐿𝑛 < ∞. The next result identifies properties of the functions {𝜙𝑛}𝑛∈C that
ensure the closed-loop system stability.

Proposition 1.3.1. (Uniqueness of the equilibrium and global asymptotic sta-
bility of (1.7)): Let q𝐶 (0) ∈ Q, and let

{𝜙𝑛}𝑛∈C are non-increasing. (C1)

Then, (1.7) has an unique equilibrium point (q♯C , v
♯

C) which is also globally
asymptotically stable if

0 < 𝜖 < min
{
1,

2
∥X∥𝐿 + 1

}
. (1.8)
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Proof. The uniqueness is proved in [2, Proof of Proposition III.1]. We prove
here the global asymptotic stability to correct some imprecisions in the treatment
of [2, Proof of Proposition III.2]. Consider the voltage evolution under (1.7),

vC (𝑡 + 1) = XqC (𝑡 + 1) + v̂C

= (1 − 𝜖)XqC (𝑡) + 𝜖X𝝓(vC (𝑡)) + (1 − 𝜖)v̂C + 𝜖 v̂C

= (1 − 𝜖)vC (𝑡) + 𝜖 (X𝝓(vC (𝑡)) + v̂C).

Define a diagonal matrix M(𝑡) ∈ R𝐶×𝐶 with the 𝑛-th diagonal entry being

𝑀𝑛 (𝑡) =
{

|𝜙𝑛 (𝑣𝑛 (𝑡 ) )−𝜙 (𝑣′𝑛 (𝑡 ) ) |
|𝑣𝑛 (𝑡 )−𝑣′𝑛 (𝑡 ) | 𝑣𝑛 ≠ 𝑣

′
𝑛,

0 𝑣𝑛 = 𝑣
′
𝑛.

Then, for any vC (0), v′C (0) ∈ R
𝐶 , it follows that

vC (𝑡 + 1) − v′C (𝑡 + 1) = (1 − 𝜖) (vC (𝑡) − v′C (𝑡)) + 𝜖X
(
𝝓(vC (𝑡)) − 𝝓(v′C (𝑡))

)
= (1 − 𝜖) (vC (𝑡) − v′C (𝑡)) − 𝜖Xsign(vC (t) − v′C (t)) |𝝓(vC (t)) − 𝝓(v′C (t)) |
= (1 − 𝜖) (vC (𝑡) − v′C (𝑡)) − 𝜖XM(𝑡)sign(vC (t) − v′C (t)) |vC (t) − v′C (t) |
= ((1 − 𝜖)I − 𝜖XM(𝑡)) (vC (𝑡) − v′C (𝑡)),

where we have used in the second equality the fact that 𝜙𝑛 is non-increasing in
𝑣𝑛 for each 𝑛 ∈ C. Consequently,

vC (𝑡 + 1) − v′C (𝑡 + 1) =
[
𝑡∏
𝑖=0

((1 − 𝜖)I − 𝜖XM(𝑖))
]

︸                             ︷︷                             ︸
:=g𝑡

(vC (0) − v′C (0)). (1.9)

We show that for 𝑡 large enough, the operator g𝑡 is a contraction. Notice that
(1 − 𝜖)I − 𝜖XM(𝑖) = X 1

2 ((1 − 𝜖)I − 𝜖X 1
2 M(𝑖)X 1

2 )X− 1
2 , therefore it holds that

g𝑡 = X
1
2

(
𝑡∏
𝑖=0

(1 − 𝜖)I − 𝜖X 1
2 M(𝑖)X 1

2

)
X− 1

2 .

This implies that

∥g𝑡 ∥ ≤ ∥X 1
2 ∥∥X− 1

2 ∥
𝑡∏
𝑖=0

∥(1 − 𝜖)I − 𝜖X 1
2 M(𝑖)X 1

2 ∥.

Note that X 1
2 M(𝑖)X 1

2 ⪰ 0 is similar to XM(𝑖). Hence ∥(1−𝜖)I−𝜖X 1
2 M(𝑖)X 1

2 ∥ =
max{|1 − 𝜖 − 𝜖𝜆max (XM(𝑖)) |, |1 − 𝜖 − 𝜖𝜆min (XM(𝑖)) |}. Therefore, ∥(1 −
𝜖)I − 𝜖X 1

2 M(𝑖)X 1
2 ∥ < 1 if and only if 1 − 𝜖 − 𝜖𝜆max (XM(𝑖)) > −1. Since

𝜆max (XM(𝑖)) ≤ ∥X∥𝐿, this directly follows from (1.8). Therefore, ∥(1 − 𝜖)I −
𝜖X 1

2 M(𝑖)X 1
2 ∥ < 1 for any 0 ≤ 𝑖 ≤ 𝑡, and thus for sufficiently large 𝑡, we have

that ∥g𝑡 ∥ < 1, i.e., g𝑡 is a contraction. Invoking the Banach’s fixed-point theo-
rem [31], we conclude that the equilibrium is globally asymptotically stable.
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This result means that, as long as the functions {𝜙𝑛}𝑛∈C meet the condi-
tions (C1), one can always find 𝜖 > 0 so that (qC , vC) converges to the unique
equilibrium point (q♯C , v

♯

C) under the reactive power update rule (1.5). Note that,
in condition (1.8), ∥X∥ is fully determined by the DG and 𝐿 can be computed
once the functions {𝜙𝑛}𝑛∈C have been selected. Because qL and p are fixed,
the convergence of qC leads also via (1.3) to the global asymptotic convergence
of v.

To conclude this section, we briefly compare (1.7) with the control schemes
provided in the literature. Controllers like (1.5) are referred to as incremental,
because the new reactive power is obtained by adding to the previous one an
increment weighted by the stepsize parameter 𝜖 . Many works [15–17] propose
local Volt/Var control schemes of the form

𝑞𝑛 (𝑡 + 1) = 𝜑𝑛 (𝑣𝑛 (𝑡)). (1.10)

which can be referred to as non-incremental schemes [32]. Reactive powers are
determined based on the local measurements and do not depend on the previous
setpoints. The equilibrium points of (1.10) satisfy

𝑞𝑛 = 𝜑𝑛 (𝑣𝑛)
𝑣𝑛 = 𝑣𝑛 (qC)

i.e., 𝜑𝑛 (𝑣𝑛) plays the double role of the control function and the equilibrium
function. Thus, even the control rule, which corresponds to 𝜖 = 1 in (1.5),

𝑞𝑛 (𝑡 + 1) = 𝜙𝑛 (𝑣𝑛 (𝑡)). (1.11)

looks appealing for our framework because its equilibria are determined by 𝜙𝑛.
From the proof of Proposition 1.3.1, one can show that the algorithm (1.11) is
globally asymptotically stable if the equilibrium functions meet not only (C1),
but also

∥X∥𝐿 < 1. (1.12)

This condition bounds the slope of the functions {𝜙𝑛}𝑛∈C and appears often
in the literature [12,17,18,27]. This means that, to ensure the stability of non-
incremental algorithms (1.10), we need to restrict the search space of potential
candidates of {𝜙𝑛}𝑛∈C , thus risking a degradation in system performance in
terms of the optimality gap at the equilibrium. The aforementioned restriction
motivates the adoption of an incremental control like (1.5).

1.4 EQUILIBRIUM FUNCTIONS WITH REACTIVE POWER AS AN AD-
DITIONAL ARGUMENT

In this section, we consider equilibrium functions that have as arguments both
the local voltage and the reactive power. We focus in particular on separable
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functions of the form

𝛾𝑛 (𝑞𝑛, 𝑣𝑛) = 𝜙𝑛 (𝑣𝑛) + 𝜓𝑛 (𝑞𝑛), 𝑛 ∈ C (1.13)

where 𝜙𝑛 and 𝜓𝑛 are continuously differentiable functions depend solely on
the local voltage and reactive power with Lipschitz constants 𝐿𝜙𝑛 , 𝐿𝜓𝑛 < ∞,
respectively. For convenience, denote 𝐿𝝓 := max𝑛∈C 𝐿𝜙𝑛 , 𝐿𝝍 := max𝑛∈C 𝐿𝜓𝑛 .
The next result provides conditions on the equilibrium functions that guarantee
the uniqueness and asymptotic stability of the equilibrium.

Theorem 1.4.1. (Uniqueness and global asymptotic stability of the equilib-
rium): Under equation (1.13), with 𝜙𝑛 and 𝜓𝑛 continuously differentiable, the
system (1.7) has an unique equilibrium point which is globally asymptotically
stable if

𝐿𝝍 + 𝐿𝝓 ∥X∥ < 1. (C2)

We refer the reader to [3, Proof of Theorem III.1] for the proof. Note that,
contrary to the classic solutions proposed in the literature, see e.g., [15,18],
or to what we obtained in Section 1.3, condition (C2) does not constrain the
equilibrium functions to be monotonic and allows them to have arbitrary shapes,
as soon as their slopes “are not too steep”. Indeed, it is trivial to see that the
slopes of the functions {𝜙𝑛, 𝜓𝑛}𝑛∈C are bounded given that it must hold

𝐿𝝓 < 1/∥X∥, 𝐿𝝍 < 1.

A consequence of this slope limitation is that the range of 𝛾𝑛 might be a strict
subset of Q𝑛, in particular when 𝑞max,𝑛 is large. That is, the generation capability
of agent 𝑛might not be fully exploited. This issue can be addressed by requiring
the functions {𝜙𝑛}𝑛∈C to be decreasing and letting the functions {𝜓𝑛}𝑛∈C to
have arbitrary shape but with limited slope. The next result, cf. [3, Theorem
III.3], provides the condition for the stability in the aforesaid setup.

Theorem 1.4.2. (Uniqueness and local asymptotic stability of the equilibrium):
Under equation (1.13), with 𝜙𝑛 and 𝜓𝑛 continuously differentiable, the sys-
tem (1.7) has an unique equilibrium point if

{𝜙𝑛}𝑛∈C are decreasing and 𝐿𝝍 < 1. (C3)

Further, the equilibrium point is locally asymptotically stable if

𝜖 <
2

𝐿𝝍 + 𝐿𝝓 ∥X∥ + 1
. (1.14)

The proof of this result can be found in [3, Proof of Theorem III.3]. We refer
to condition (C2) as coupled voltage-power slope constraint (CVP-SC), whereas
we refer to condition (C3) as reactive power slope constraint (RP-SC). We argue
that the CVP-SC is suitable for DGs with many small-sized DERs since for
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them the slope constraints do not lead to significant limits on their generation
usage, and the more flexible shape of equilibrium functions enhances optimality.
Instead, we the RP-SC is more suitable for the case of a DG with relatively
big-size generators, since the lack of slope limitations on the functions {𝜙𝑛}𝑛∈C
could help the generators make full use of their reactive power compensation
capabilities and thus leads to better performance. We illustrate such trade-offs
in the simulations through two different DG cases. Finally, we note that CVP-
SC ensures the global asymptotic stability, whereas RP-SC ensures the local
asymptotic stability, as the latter relies on the linearization of the operator g at
equilibrium points. Moreover, CVP-SC allows arbitrary 𝜖 ∈ [0, 1], while RP-SC
might be more restrictive on the selection of 𝜖 , cf. (1.14).

1.5 LEARNING EQUILIBRIUM FUNCTIONS FROM DATA

Having established the conditions on equilibrium functions for system stability,
in this section we lay out a data-driven approach to synthesize the equilibrium
functions, characterizing the equilibrium points of (1.7).

For the case that equilibrium functions depend only on voltages, cf. Sec-
tion 1.3, 𝛾𝑛 (𝑣𝑛, 𝑞𝑛) = 𝜙𝑛 (𝑣𝑛) for each 𝑛 ∈ C, the data set used in the training
can be obtained following the steps in Box I.

Box I

1. Build a set {(p𝑘 , q𝑘L)}
𝐾
𝑘=1 of 𝐾 load-generation scenarios. The sce-

narios can be obtained from historical data retrieved by smart meters,
via random sampling from given a priori probability distributions, or
from load predictions.

2. Solve1, for each scenario, the ORPF problem (1.4) to obtain
q★,𝑘C (p𝑘 , q𝑘L) and associated v★,𝑘C (p𝑘 , q𝑘L , q

★,𝑘

C ).
3. Build the labeled data set of minimizers D = {(q★,𝑘C , v★,𝑘C )}𝐾

𝑘=1.
Obtain data sets D𝑛 = {(𝑣★,𝑘𝑛 , 𝑞

★,𝑘
𝑛 )}𝐾

𝑘=1 from D by separating the
entries associated with each 𝑛 ∈ C.

Then, for each 𝑛 ∈ C, 𝜙𝑛 is learned using the data in D𝑛 = {(𝑣★,𝑘𝑛 , 𝑞
★,𝑘
𝑛 )}𝐾

𝑘=1

1. Note that here, we tacitly assumed that, for any scenario (p𝑘 , q𝑘L ) , the solution q★C,𝑘 exists or, in
other words, that the ORPF problem is feasible. However, a DG might be under load-generation
scenarios for which (1.4) does not have a solution and the voltages constraints are not satisfied.
In such cases, engineering sense suggests to use the entire reactive power generation capability
to alleviate the voltage violations as much as possible, i.e., to set 𝑞𝑛 = 𝑞max,𝑛 (𝑞𝑛 = 𝑞min,𝑛)
when 𝑣𝑛 < 𝑣min,𝑛 (𝑣𝑛 > 𝑣max,𝑛 ) , see [15]. To obtain the functions {𝜙𝑛 }𝑛∈C that comply
with the former observation, a certain number of additional data points, referred to as pseudo
points, can be added to the data set, e.g., pairs of the form { (𝑣𝑛,𝑘 , 𝑞max,𝑛 ) }

𝐾

𝑘=1, 𝑣𝑛,𝑘 ≤ 𝑣min,𝑛

and { (𝑣𝑛,𝑘 , 𝑞min,𝑛 ) }𝐾𝑘=1, 𝑣𝑛,𝑘 ≥ 𝑣max,𝑛. These points could be uniformly spaced or randomly
sampled.
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by solving a problem of the form

min
𝜙𝑛

𝐾∑︁
𝑘=1

|𝑞★,𝑘𝑛 − 𝜙𝑛 (𝑣★,𝑘𝑛 ) |2 (1.15)

s.t. 𝜙𝑛 meets the condition (C1).

For the case that equilibrium functions depend on both voltages and reactive
powers, cf. Section 1.4, 𝛾𝑛 (𝑣𝑛, 𝑞𝑛) = 𝜙𝑛 (𝑣𝑛) + 𝜓𝑛 (𝑞𝑛) for each 𝑛 ∈ C, the data
set is instead obtained following the steps in Box II.

Box II

1. Build a set {(p𝑘 , q𝑘L , q
𝑘
C)}

𝐾
𝑘=1 of 𝐾 load-generation scenarios. The

scenarios can be obtained similarly to what we described in Box II.
2. Solve, for each scenario, the power flow equation (1.1) and the ORPF

problem (1.4) to obtain v𝑘C (p
𝑘 , q𝑘L , q

𝑘
C) and q★,𝑘C (p𝑘 , q𝑘L), respec-

tively.
3. Build the labeled data set of minimizers D = {(v𝑘C , q

𝑘
C , q

★,𝑘

C )}𝐾
𝑘=1.

Obtain data sets D𝑛 = {(𝑣𝑘𝑛 , 𝑞𝑘𝑛, 𝑞★,𝑘𝑛 )}𝐾
𝑘=1 from D by separating the

entries associated with each 𝑛 ∈ C.

Then, for each 𝑛 ∈ C, 𝛾𝑛 is learned using the data inD𝑛 = {(𝑣𝑘𝑛 , 𝑞𝑘𝑛, 𝑞★,𝑘𝑛 )}𝐾
𝑘=1

by solving a problem of the form

min
𝛾𝑛

𝐾∑︁
𝑘=1

|𝑞★,𝑘𝑛 − 𝛾𝑛 (𝑣𝑘𝑛 , 𝑞𝑘𝑛) |2 (1.16)

s.t. 𝛾𝑛 meets the conditions (C2) or (C3).

Typical approaches to solve (1.15) or (1.16) involve restricting the search
space for the function 𝜙𝑛 and 𝜓𝑛 via a convenient parameterization, e.g., poly-
nomial regression or neural network approximation methods. In the follow-
ing, we provide a single-hidden-layer neural network design framework that
achieves (C1) – (C3) and uses the Rectified Linear Unit (ReLU) activation func-
tion

ReLU(𝑥) = max(0, 𝑥).

Consider the single-hidden-layer neural network of the form

N(𝑥) =
𝐻∑︁
ℎ=1

𝑤ℎReLU(𝑥 − 𝑏ℎ) + 𝛽, (1.17)

with 𝑤ℎ and 𝑏ℎ being the weight and bias of the ℎ-th neuron unit, respectively; 𝛽
being an additional bias term applied in the output layer; and𝐻 being the number
of neuron units in the hidden layer. The neural network (1.17) is a composite of
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FIGURE 1.1 The modified IEEE 37-bus feeder.

𝐻 linear segments. Reorder the neuron units such that 𝑏1 ≤ 𝑏2 ≤ · · · ≤ 𝑏𝐻 , an
important property is that the slope of 𝐽-th segment of N can be expressed as [2]

𝐽∑︁
𝑗=1
𝑤 𝑗 , 𝐽 ∈ {1, 2, . . . , 𝐻}. (1.18)

Leveraging this property, and by parameterizing 𝜙𝑛 and 𝜓𝑛 using the neural
network N, one can easily design the conditions on the weights to ensure (C1) –
(C3). Indeed, by making sure

∑𝐽
𝑗=1 𝑤 𝑗 < (≤)0 for all 𝐽 ∈ {1, 2, . . . , 𝐻}, one can

guarantee the learned functions to be decreasing (non-increasing), and, by posing
constraints to max𝐽∈{1,..,𝐻 }

��� ∑𝐽
𝑗=1 𝑤 𝑗

���, one can also bound the Lipschitz constant
of the learned functions. This helps to convert the optimization problems (1.15)
and (1.16) to convenient parameterized formulations. Then they can be solved
using suitable renditions of (stochastic) gradient descent prevalent for neural
network training, e.g., the Adam algorithm [33].

1.6 CASE STUDY

In this section, we test the proposed framework on the modified single-phase
equivalent of the IEEE 37-bus system, where we have also omitted its regulators,
shown in Fig. 1.1. The data sets for the learning process are built using the same
minute-based load and solar generation data profiles used in [2], which are
intended as day-ahead forecasts. The voltage limits are set to 𝑣min,𝑛 = 0.95 p.u.
and 𝑣min,𝑛 = 1.05 p.u. for every 𝑛 ∈ N .

1.6.1 Equilibrium Functions Depending Only On Voltage

Here we validate the results obtained in Section 1.3. The grid hosts 5 DERs are
placed at nodes C1 = {27, 31, 32, 34, 35} with uniform generation capabilities,
i.e., 𝑞max,𝑛 = 0.4 MVAR, and 𝑞min,𝑛 = −𝑞max,𝑛 for every 𝑛 ∈ C1. We benchmark
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the proposed strategy against the optimized droop control design from [22]

𝑞𝑛 (𝑡 + 1) = 𝜌𝑛 (𝑣𝑛) :=



𝑞max,𝑛 𝑣𝑛 ≤ 𝑣min,𝑛,
𝑣̄min,𝑛−𝑣𝑛
𝑣̄min,𝑛−𝑣min,𝑛

𝑞max,𝑛 𝑣min,𝑛 < 𝑣𝑛 < 𝑣̄min,𝑛,

0 𝑣̄min,𝑛 ≤ 𝑣𝑛 ≤ 𝑣̄max,𝑛,
𝑣𝑛−𝑣̄max,𝑛

𝑣̄max,𝑛−𝑣̄max,𝑛
𝑞min,𝑛 𝑣̄max,𝑛 < 𝑣𝑛 < 𝑣max,𝑛,

𝑞min,𝑛 𝑣𝑛 ≥ 𝑣max,𝑛

where the parameters 𝑣̄min,𝑛 and 𝑣̄max,𝑛, with 𝑣min,𝑛 < 𝑣̄min,𝑛 ≤ 𝑣̄max,𝑛 < 𝑣max,𝑛,
are optimized given day-ahead forecasts.

We consider the cost in (1.4) to be

𝑓 (qC) = 𝛼 ∥v(qC) − 1∥︸         ︷︷         ︸
①

+(1 − 𝛼) (q⊤R̃q + p⊤R̃p)︸               ︷︷               ︸
②

,

where ① and ② stand for the voltage deviations and power losses [12], re-
spectively, and 𝛼 is a trade-off parameter for those two objectives. The ORPF
problem (1.4) is solved with linearized power flow (1.2) using the CVX tool-
box [34]. However, we note that any other power flow models can be used to
solve the ORPF problem.

We add pseudo data points to the obtained data set with 𝐾 = 𝐾 = 700, which
results in a total of 2840 data points for each DER. We implement the neural
network approach according to Section 1.5 using TensorFlow 2.7.0 and conduct
the training process in Google Colab with a single TPU with 32 GB memory.
The number of episodes and the number of neurons 𝐻 are 2000 and 1000,
respectively, and the neural networks are trained using the Adam optimizer [33]
with the learning rate initialized at 0.01, decaying every 500 steps with a base of
0.5.

The equilibrium functions are computed by solving (1.15). Fig. 1.2 plots
the equilibrium function 𝜙32 learned with and without pseudo points, and the
optimized droop function 𝜌32 for the DER at node 32 with 𝛼 = 1

3 . Compared to
the case in which no pseudo points are added in the learning process, the learned
equilibrium function with pseudo points reaches maximum reactive power com-
pensation capability when voltage exceeds the limits, with little change to the
learned curve when voltage is with in the limits. We further summarize in
Table 1.1 the average loss for the whole training data set using the learned
equilibrium functions and optimized droop control functions, i.e.,∑𝐾

𝑘=1 ∥q★C,𝑘 −□(v★C,𝑘)∥
2

𝐾
, (1.19)

where □ is 𝝓 for the data-based method and 𝝆 for the optimized droop control.
The results illustrate the enhanced optimality of the learned equilibrium functions
in approximating ORPF solutions compared to the benchmark method.
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TABLE 1.1 Average loss values for all data profiles
𝛼 0 1/3 1/2 2/3 1

Learned equilibrium function 0.045 0.030 0.036 0.088 0.189
Optimal droop function 0.175 0.086 0.215 0.362 0.439

We also illustrate the advantage of using the incremental algorithm in Fig. 1.2.
Recall that to guarantee the convergence of the non-incremental algorithm, i.e.,
𝜖 = 1, one needs to further enforce an additional slope constraint (1.12) on the
learned equilibrium functions. Fig. 1.2 shows that this additional slope constraint
leads to worse approximation performance of the learned equilibrium functions
in fitting the data set (we do not consider the pseudo points during learning here
for fairness), and thus degrades the optimality of system performance.
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FIGURE 1.2 The learned equilibrium functions under different settings and the optimized droop
function.

Having learned the equilibrium functions, next we run simulations for the
case 𝛼 = 1

3 , with the pseudo data points considered, and assume that qC (0) = 0.
We use Matpower [35] to solve the power flow equation. First, we verify the
convergence properties of the proposed reactive power update rule (1.5) stated
in Proposition 1.3.1. Consider the scenario where the load-generation profiles
are fixed. Fig. 1.3 reports the evolution of the DERs’ reactive power setpoints
using load-generation profiles of the 695-th minute and considers 20 iterations
of (1.5). For 𝜖 = 0.369, the reactive power setpoint trajectories converge to their
final values, cf. Fig. 1.3(a), whereas for 𝜖 = 1 it fails, cf. Fig. 1.3(b). This is
consistent with the sufficient condition

0 < 𝜖 < min
{
1,

2
∥X∥𝐿 + 1

}
= 0.859

derived in Proposition 1.3.1.
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(a) 𝜖 = 0.369
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FIGURE 1.3 Evolution of reactive power setpoints under the proposed reactive power update
rule (1.5) with (a) 𝜖 = 0.369 and (b) 𝜖 = 1, where we use the power data profiles of the 695-th minute
and consider 20 iterations. This verifies the sufficient condition 0 < 𝜖 < min{1, 2

∥X∥𝐿+1 } = 0.859
in Proposition 1.3.1 to ensure global asymptotic stability.

Next, we test the proposed data-based control method in a scenario where the
load-generation profiles are time-varying. We obtain the testing load-generation
profiles by randomly perturbing (5%) the consumption data used to learn the
equilibrium functions. This can be interpreted as having the data from the data set
prescribing a day-ahead forecast, whereas their random perturbation acts as the
true realization of the load-generation scenarios. These loads and generations are
minute-based and we consider 120 iterations of (1.5) per minute with 𝜖 = 0.369.
Fig. 1.4 compares the evolution of the maximum/minimum voltages under the
proposed data-based control method, the optimized droop control method, the
ORPF solutions, and the case where no control action is taken. One can observe
that, the optimized droop control method induces instability issues within 12:00
and 16:00 causing voltages to oscillate. To further illustrate the effectiveness and
advantages of the proposed data-based control method, Table 1.2 summarizes
the comparison results of the proposed data-based control method against the
optimized linear droop control methods, as well as the case where no control
action is taken for different values of 𝛼. We quantify the performance by the
average of the distances of the actual and optimal reactive power setpoints, i.e.,
average of ∥qC (𝑡)−q★C (𝑡)∥ for the entire day. It can be observed that the proposed
data-based control method outperforms the benchmark method in all cases.

TABLE 1.2 Average distances between actual reactive power setpoints and ORPF
solutions for entire day

𝛼 0 1/3 1/2 2/3 1
Data-based Control 0.119 0.099 0.078 0.112 0.165

Optimal Droop Control 0.279 0.247 0.373 0.441 0.485
No Control 0.316 0.508 0.684 0.803 0.836
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FIGURE 1.4 Evolution of the maximum (solid line) and minimum (dashed line) voltages of the
IEEE 37-bus network under the proposed data-based, ORPF solutions, optimized linear droop,
and no control methods. For all minute-based data profiles, the ORPF problem is feasible and
thus q★C always exists. The optimized droop control induces voltage instability issues, causing
voltages oscillations during 12:00 and 16:00, while the proposed data-based method guarantees the
convergence of voltages for every minute-based data profile.

Our simulation results above validate the improved performance of the pro-
posed data-based method compared to the optimized droop control method for
different control goals. In fact, apart from considering the minimization of
voltage deviations and power losses, our framework allows the users to con-
sider any other type of cost functions, depending on specific control goals, to
learn purely local controllers that steer system operating points to approximated
ORPF solutions. An important observation is that, although the ORPF approach
strictly guarantees that the voltages are within limits, our approach does not.
For instance, in Fig. 1.4, the voltage nadir during evolution under the proposed
data-based method slightly violates the voltage limits. The reason is that when 𝛼
is relatively small, many of the optimal solutions given by the ORPF problem lie
on the boundary of the voltages limits. Since the local surrogates only provide
approximations of the optimal solutions, the actual converged voltages can easily
go out of limits in such situations. On the other hand, as pointed out in [19],
purely local control strategies generally have no guarantee on desired regulation,
in the sense that the equilibrium q♯C of (1.7) could result in v(q♯C) ∉ [vmin, vmax],
even if there indeed exists qC such that v(qC) ∈ [vmin, vmax].

1.6.2 Equilibrium Functions with Reactive Power as an Additional
Argument

Here we validate the approach developed in Section 1.4. We benchmark the
resulting control rules against the method in Section 1.3, where the equilibrium
functions solely depend on local voltages.
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We set the cost in (1.4) to be

𝑓 (qC) = q⊤R̃q + p⊤R̃p,

meaning purely minimizing power losses. We consider two scenarios. In
Case-1, there are 5 generators, placed at buses C1 = {27, 31, 32, 34, 35}, with
generation capability qmax = 0.4×1 MVAR; in Case-2, there are 10 generators,
placed at buses C2 = C1 ∪ {6, 18, 28, 29, 33}, with generation capability qmax =

0.2×1 MVAR. In both the cases, qmin = −qmax. Notice that in Case-2, we have a
bigger number of smaller generators than inCase-1. For our experiments, we use
the same minute-based load and solar generation data in Section 1.6.1. Moreover,
we randomly generate five reactive power injection qC from [qmin, qmax] for each
minute-based data, resulting in a total of 𝐾 = 1440 × 5 = 7200 load-generation
profiles. We use the CVX toolbox [34] to solve the power flow equation (1.2)
as well as the ORPF problem (1.4) for all load-generation profiles. The training
setup is the same as in Section 1.6.1.

The equilibrium functions are computed by solving (1.16). Consistent with
our discussion in Section 1.4, we use RP-SC in Case-1 since it is more suitable
for the case with relatively big size generators, and use CVP-SC in Case-2 due to
its advantages for the case with relatively small size generators. In all cases, we
use the method in Section 1.3 as the baseline. Table 1.3 illustrates the learning
performance for the two test cases. In both, the algorithms developed under CVP-
SC in Theorem 1.4.1 and RP-SC in Theorem 1.4.2, when compared with the one
in Section 1.3, achieve lower training loss, computed as 1

𝐾

∑
𝑛∈C

∑𝐾
𝑘=1 |𝑞

★,𝑘
𝑛 −

𝛾𝑛 (𝑣𝑘𝑛 , 𝑞𝑘𝑛) |2, cf. Table 1.3. This shows that the inclusion of reactive power
as argument of the equilibrium function helps increase the prediction accuracy.
Figs. 1.5 and 1.6 plot the learned functions 𝜙35 and 𝜓35 for Case-1 and Case-2,
respectively. In Case-1, although CVP-SC allows the function 𝜙𝑛 to have
arbitrary shape, the learned function 𝜙35 in Fig. 1.5 is decreasing. Thus, the more
restrictive slope limitations of CVP-SC make its performance worse than RP-SC
in approximating the ORPF solutions, which explains CVP-SC yielding greater
training loss than RP-SC for Case-1 in Table 1.3. Instead, in Case-2, although
CVP-SC has more restrictive slope limitations on the functions {𝜙𝑛}𝑛∈C , it does
not affect much the performance since the generation capability is relatively
small. Instead, the monotonicity requirement for the functions {𝜙𝑛}𝑛∈C in RP-
SC degrades the prediction accuracy as one can see that the learned function
𝜙35 in Fig. 1.6 for CVP-SC is not always decreasing. This is the reason that
CVP-SC works better for Case-2, as Table 1.3 suggests. These observations are
consistent with our discussion in Section 1.4.

We test the control performance of the proposed methods under CVP-SC
and RP-SC. Although our stability analysis is done for the linearized power
flow model, here we employ Matpower [35] to solve the AC power flow to

1. The method in Section 1.3 is a special case of RP-SC with 𝜓𝑛 = 0 for all 𝑛 ∈ C.
2. The method in Section 1.3 is a special case of RP-SC with 𝜓𝑛 = 0 for all 𝑛 ∈ C.
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TABLE 1.3 Average training loss and optimality gap distance between actual reactive
power setpoints and ORPF solutions2

Training loss Average distance

Baseline Improvement Baseline Improvement

Case-1 3.15 × 10−2 39.7% 0.1969 13.09%
Case-2 7.9 × 10−3 14.0% 0.1235 39.41%
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FIGURE 1.5 Leaned functions (a) 𝜙35 and (b) 𝜓35 of node 35 for Case-1 under CVP-SC and
RP-SC.

run the simulations. We test the proposed methods in a scenario where load-
generation profiles are time-varying. Specifically, we randomly perturb (5%) the
consumption data between 15:00 and 17:00 to obtain the testing load-generation
profiles. We set 𝜖 = 0.1 and consider 120 iterations of (1.5) using the controllers
developed under CVP-SC and RP-SC. Table 1.3 summarizes the average dis-
tances between the actual reactive power setpoints and the ORPF solutions. The
performance displayed here by CVP-SC and RP-SC illustrates their respective
advantages in different DG cases and their significant improvement compared to
the baseline. Notably, we observe that the performance improvement achieved
by CVP-SC in Case-2 is greater than that by RP-SC in Case-1. This is because
in Case-2 CVP-SC enjoys the performance improvement from the inclusion
of reactive power as argument of the equilibrium function as well as the more
flexible shape of equilibrium function. Instead, in Case-1, the performance
improvement achieved by RP-SC is only due to the inclusion of reactive power
as argument of the equilibrium function.

1.7 CONCLUSIONS

We have presented a data-driven framework to design local Volt/Var controllers
to steer a DG towards efficient configurations described by the equilibrium func-
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FIGURE 1.6 Leaned functions (a) 𝜙35 and (b) 𝜓35 of node 35 for Case-2 under CVP-SC and
RP-SC.

tions. Equilibrium functions are learned using labeled data sets built using
historical data and solving ORPF problems. The control function represents an
incremental rule that updates, for every agent, the reactive power injection as a
convex combination between the previous setpoint and the present equilibrium
function value. Conditions on the equilibrium functions and on the control pa-
rameters ensuring the stability of the overall systems are formally derived and
discussed. We then have validated our approach via AC power flow simula-
tions, which show significant improvements compared to prevalent local control
approaches. Future research directions include considering the regulation of
legacy devices and unbalanced DGs, enhancing data consistency by making use
of other local information in building the data set, reducing the optimality gap
during the learning process, and extending the proposed framework to a more
general scenario where we take advantage of communication among neighboring
agents.

ACKNOWLEDGEMENT

The authors would like thank Dr. Manish K. Singh from the University of
Minnesota, Twin Cities for fruitful discussions. This work was authored by the
National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No.
DE-AC36-08GO28308. Funding provided by the NREL Laboratory Directed
Research and Development Program. The views expressed in the article do not
necessarily represent the views of the DOE or the U.S. Government. The U.S.
Government retains and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a nonexclusive, paid-up, irre-
vocable, worldwide license to publish or reproduce the published form of this
work, or allow others to do so, for U.S. Government purposes. This work was



22

also partially supported by NSF Award ECCS-1947050.



Learning Stable Local Volt/Var Controllers in Distribution Grids Chapter | 1 23

[1] G. Cavraro, Z. Yuan, M. K. Singh, J. Cortés, Learning local Volt/Var controllers towards
efficient network operation with stability guarantees, in: IEEE Conf. on Decision and Control,
Cancun, Mexico, 2022, pp. 5056–5061.

[2] Z. Yuan, G. Cavraro, M. K. Singh, J. Cortés, Learning provably stable local Volt/Var controllers
for efficient network operation, IEEE Transactions on Power SystemsTo appear.

[3] Z. Yuan, G. Cavraro, J. Cortés, Constraints on OPF surrogates for learning stable local Volt/Var
controllers, IEEE Control Systems LettersTo appear.

[4] S. H. Low, Convex relaxation of optimal power flow - Part I: Formulations and equivalence,
IEEE Transactions on Control of Network Systems 1 (1) (2014) 15–27.

[5] B. Cui, X. A. Sun, A new voltage stability-constrained optimal power-flow model: Sufficient
condition, SOCP representation, and relaxation, IEEE Transactions on Power Systems 33 (5)
(2018) 5092–5102.

[6] L. Gan, N. Li, U. Topcu, S. H. Low, Optimal power flow in tree networks, in: IEEE Conf. on
Decision and Control, Firenze, Italy, 2013, pp. 2313–2318.

[7] X. Pan, T. Zhao, M. Chen, S. Zhang, DeepOPF: A deep neural network approach for security-
constrained DC optimal power flow, IEEE Transactions on Power Systems 36 (3) (2021)
1725–1735.

[8] F. Fioretto, T. W. K. Mak, P. Van Hentenryck, Predicting AC optimal power flows: Combining
deep learning and lagrangian dual methods, in: AAAI Conference on Artificial Intelligence,
New York, USA, 2020, pp. 630–637.

[9] D. Owerko, F. Gama, A. Ribeiro, Optimal power flow using graph neural networks, in: IEEE
Int. Conf. on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 5930–5934.

[10] M. K. Singh, V. Kekatos, G. B. Giannakis, Learning to solve the AC-OPF using sensitivity-
informed deep neural networks, IEEE Transactions on Power Systems 37 (4) (2022) 2833–2846.

[11] E. Dall’Anese, H. Zhu, G. B. Giannakis, Distributed optimal power flow for smart microgrids,
IEEE Transactions on Smart Grid 4 (3) (2013) 1464–1475.

[12] G. Cavraro, R. Carli, Local and distributed voltage control algorithms in distribution networks,
IEEE Transactions on Power Systems 33 (2) (2017) 1420–1430.

[13] E. Dall’Anese, A. Simonetto, Optimal power flow pursuit, IEEE Transactions on Smart Grid
9 (2) (2018) 942–952.

[14] G. Qu, N. Li, Optimal distributed feedback voltage control under limited reactive power, IEEE
Transactions on Power Systems 35 (1) (2020) 315–331.

[15] IEEE standard for interconnection and interoperability of distributed energy resources with
associated electric power systems interfaces, IEEE Std 1547-2018 (Revision of IEEE Std
1547-2003) (2018) 1–138doi:10.1109/IEEESTD.2018.8332112.

[16] K. Turitsyn, P. Sulc, S. Backhaus, M. Chertkov, Options for control of reactive power by
distributed photovoltaic generators, Proceedings of the IEEE 99 (6) (2011) 1063–1073.

[17] H. Zhu, H. J. Liu, Fast local voltage control under limited reactive power: Optimality and
stability analysis, IEEE Transactions on Power Systems 31 (5) (2015) 3794–3803.

[18] X. Zhou, M. Farivar, Z. Liu, L. Chen, S. H. Low, Reverse and forward engineering of local
voltage control in distribution networks, IEEE Transactions on Automatic Control 66 (3) (2021)
1116–1128.

[19] S. Bolognani, R. Carli, G. Cavraro, S. Zampieri, On the need for communication for voltage
regulation of power distribution grids, IEEE Transactions on Control of Network Systems 6 (3)
(2019) 1111–1123.

[20] X. Sun, J. Qiu, J. Zhao, Optimal local Volt/Var control for photovoltaic inverters in active
distribution networks, IEEE Transactions on Power Systems 36 (6) (2021) 5756–5766.

[21] S. Karagiannopoulos, P. Aristidou, G. Hug, Data-driven local control design for active distri-

http://dx.doi.org/10.1109/IEEESTD.2018.8332112


24

bution grids using off-line optimal power flow and machine learning techniques, IEEE Trans.
Smart Grid 10 (6) (2019) 6461–6471. doi:10.1109/TSG.2019.2905348.

[22] H. Ji, C. Wang, P. Li, J. Zhao, G. Song, F. Ding, J. Wu, A centralized-based method to
determine the local voltage control strategies of distributed generator operation in active
distribution networks, Applied Energy 228 (2018) 2024–2036.

[23] W. Cui, Y. Jiang, B. Zhang, Reinforcement learning for optimal primary frequency control: A
Lyapunov approach, IEEE Transactions on Power SystemsTo appear.

[24] Z. Yuan, C. Zhao, J. Cortés, Reinforcement learning for distributed transient frequency control
with stability and safety guarantees, Systems & Control LettersSubmitted.

[25] W. Cui, J. Li, B. Zhang, Decentralized safe reinforcement learning for inverter-based voltage
control, Electric Power Systems Research 211 (2022) 108609.

[26] Y. Shi, G. Qu, S. H. Low, A. Anandkumar, A. Wierman, Stability constrained reinforcement
learning for real-time voltage control, in: American Control Conference, Atlanta, GA, 2022,
pp. 2715–2721.

[27] C. Zhang, Y. Xu, Y. Wang, Z. Y. Dong, R. Zhang, Three-stage hierarchically-coordinated
Voltage/Var control based on PV inverters considering distribution network voltage stability,
IEEE Transactions on Sustainable Energy 13 (2) (2021) 868–881.

[28] S. Gupta, S. Chatzivasileiadis, V. Kekatos, Deep learning for optimal Volt/VAR control using
distributed energy resources, arXiv preprint arXiv:2211.09557.

[29] A. M. Kettner, M. Paolone, On the properties of the compound nodal admittance matrix of
polyphase power systems, IEEE Transactions on Power Systems 34 (1) (2019) 444–453.

[30] M. K. Singh, S. Gupta, V. Kekatos, G. Cavraro, A. Bernstein, Learning to optimize power
distribution grids using sensitivity-informed deep neural networks, in: IEEE Int. Conf. on
Communications, Control, and Computing Technologies for Smart Grids, Tempe, AZ, USA,
2020.

[31] A. Granas, J. Dugundji, Fixed Point Theory, Vol. 14, Springer, 2003.
[32] M. Farivar, X. Zhou, L. Chen, Local voltage control in distribution systems: An incremental

control algorithm, in: IEEE Int. Conf. on Communications, Control, and Computing Tech-
nologies for Smart Grids, Miami, FL, USA, 2015, pp. 732–737.

[33] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference
on Learning Representations, San Diego, CA, USA, 2015.

[34] M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1,
available at http://cvxr.com/cvx (Mar. 2014).

[35] R. D. Zimmerman, C. E. Murillo-Sánchez, R. J. Thomas, Matpower: Steady-state operations,
planning and analysis tools for power systems research education, IEEE Transactions on Power
Systems 26 (1) (2011) 12–19.

http://dx.doi.org/10.1109/TSG.2019.2905348
http://cvxr.com/cvx

	1 Learning Stable Local Volt/Var Controllers in Distribution Grids
	1.1 Introduction
	1.2 Grid Modeling and Problem Formulation
	1.2.1 Grid Modeling
	1.2.2 Problem Formulation

	1.3 Equilibrium Functions Depending Only On Voltage
	1.4 Equilibrium Functions with Reactive Power as an Additional Argument
	1.5 Learning Equilibrium Functions From Data
	1.6 Case Study
	1.6.1 Equilibrium Functions Depending Only On Voltage
	1.6.2 Equilibrium Functions with Reactive Power as an Additional Argument

	1.7 Conclusions


