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Abstract

Given a network of agents, the agents are said to reach a k-dimensional agreement when the state variables agree within
a k-dimensional linear subspace. This problem is a generalization of the well-studied average consensus problem, where the
asymptotic states of the agents are not required to coincide, but rather to agree in a generalized sense. In this paper, we
investigate what structural properties of the interaction graph are required to enable the agents to reach a k-dimensional
agreement. We find that agreement protocols impose the use of communication graphs with a high network connectivity; more
precisely, we show that the number of edges in the graph must grow linearly with the size of the agreement space k. We study
under what conditions common graph topologies — such as line and circulant graphs — can sustain agreement protocols, and
provide insights into the relationship between network connectivity and the space dimension k. Our characterization identifies
the presence of cycles (precisely, of independent cycle families) in the network as a basic structural property that enables agents
to reach an agreement. The applicability of the framework is illustrated via simulations on problems in robotic formation.
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1 Introduction

Distributed coordination algorithms play a fundamental role
in several network synchronization problems, including ren-
dezvous, distributed optimization, distributed computation
and sensing, federated learning, and much more. A common
objective in network coordination problems is that of making
a group of agents agree on a common quantity. This prob-
lem is often referred to as consensus [28] and a vast body
of literature has been developed on it — see, just as an ex-
ample, the representative works [6, 28, 31]. In other cases, it
is instead of interest to make the agents agree in a general-
ized sense: rather than on a common quantity, one may be
interested in ensuring that the agents’ states converge to a
vector that belongs to a certain set (or vector space). When
the agreement set is a linear subspace and the protocol used
is linear, the problem is referred to as k-dimensional agree-
ment. We recently proposed this problem in [5], where we
provided algebraic characterizations of the matrices defining
the agreement protocol and studied their design to optimize
the rate of convergence. One outcome of our analysis in [5]
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is that k-agreement protocols, in general, require interaction
graphs with higher connectivity as compared to those used
for simpler coordination algorithms (such as average consen-
sus [28]). In this paper, we seek to provide answers to the
following question: what topological properties of the inter-
action graph ensure that a set of agents can reach an agree-
ment? Our findings in this paper extend [5] in several direc-
tions: (i) we derive necessary conditions on the topology of
the communication graph to enable an agreement; (ii) we
show that agreement is possible when the interaction topol-
ogy incorporates a sufficient number of independent cycles,
and (iii) we provide insights into the design of graphs that
support agreement protocols.

An important application of k-dimensional agreement prob-
lems is robotic formation control [9, 26|, where achieving a
certain configuration for the team amounts to ensuring that
the joint state belongs to a certain set. In this work, we ex-
plore this application and we illustrate how k-dimensional
agreement provides a natural framework to specify con-
straints to be satisfied by the team of robots at convergence.

Related work. Agreement problems are closely related
to distributed consensus; consensus algorithms have been
extensively studied in the literature. A (necessarily incom-
plete) list of studied topics includes: sufficient and neces-
sary conditions to reach a consensus [10, 18,19, 28, 30, 37],
time delays [10], consensus with linear objective maps [13],
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the use of the alternating direction method of multipli-
ers (ADMM) [7, 16, 34], dealing with quantized measure-
ments [20], convergence rates [29, 39|, robustness investi-
gations [15, 21], among many others. Particularly related
to the problem of k-dimensional agreement is that of con-
strained consensus [24,25] and distributed optimization with
global constrains [38]. Differently from these approaches,
agreement problems are characterized by constraints that
apply not only during transients, but also asymptotically;
also, agreement problems can be seen as constrained op-
timization problems with a non-separable cost function
(see Section 3.2). In Pareto optimal distributed optimiza-
tion [12], the group of agents cooperatively seeks to de-
termine the minimizer of a cost function that depends on
agent-dependent decision variables. Clustering-based con-
sensus [1,4,23] is a closely-related problem where the states
of agents in the same cluster are related and states of agents
in different clusters are independent. Instead, in agreement
problems, the state of each agent is dependent on every
other agent in the network. Scaled consensus [32], is a spe-
cial case of agreement to a subspace of dimension k = 1.
Interestingly, strong connectivity of the interaction graph
is necessary and sufficient for scaled consensus; in contrast,
in this paper, we show that strong connectivity is no longer
sufficient when the dimension of the agreement space is
k > 2. Finally, while our previous work [5] investigates nu-
merical algorithms to design agreement protocols, in this
work we pose a fundamental question: under what struc-
tural conditions on the interaction topology it is possible to
ensure the existence of agreement protocols?

Contributions. The contribution of this work is fourfold.
(c1) We provide a structural necessary condition for a certain
graph to admit an agreement protocol. We apply this condi-
tion to study agreement protocols on basic graphs, such as
line and circulant topologies. By drawing insights from our
theorems, we show how these graphs can be modified to sup-
port agreement on high-dimensional subspaces. (¢2) We pro-
vide a graph-theoretic sufficient condition that ensures that
a graph admits an agreement protocol on arbitrary weights.
Our analysis shows that agreement is made possible, graph-
theoretically, by the presence of cycle families in the commu-
nication graph. (¢3) We show how agreement algorithms can
be adapted to account for cases where the local estimates are
time-varying; in this case, we prove convergence of agreement
algorithms and an input-to-state stability-type bound. (c4)
We study the applicability of agreement protocols in robotic
formation problems, and use these algorithms to constrain
the asymptotic configuration of a team of robots.

Organization. Section 2 provides some terminology and
basic results used throughout. Section 3 presents the prob-
lem of interest; Section 4 provides our graph-theoretic con-
ditions for agreement that represent the main results of this
paper. Section 5 extends the approach to tracking problems
and Section 6 illustrates the techniques via numerical simu-
lations. Conclusions are discussed in Section 7.

2 Preliminaries

In this section, we formalize basic notions used in the paper.

Notation. Ny = {1,2,... } denotes the set of positive nat-
ural numbers. For z € C, () and $(x) denote, respectively,
its real and imaginary parts. When x € R"™ and u € R™,
(z,u) € R™™ denotes their concatenation. 1,, € R" is

the vector of all ones; I,, € R™ ™ is the identity matrix;
Op,m € R™™ is the matrix of all zeros; for these matri-
ces, subscripts are dropped when dimensions are clear from
the context. Given A € R™*", we often use the notation
A = [a;j] to denote that a;; is the element in row i and
column j of A. 0(A) = {A € C : det(A\] — A) = 0} is
the spectrum, Apax (A) = max{R(A) A € o(A)} is the
spectral abscissa. When A € R™*"™ is seen as a linear map,
Im(A) denotes its image and ker(A) its null space. Given
P1s- -, Pn € R, the polynomial p(\) = A" +p A"~ 14 +p,
is stable if all its roots have negative real part.

Algebraic graph-theoretic notions. A directed graph (or
digraph) is G = (V,&), where V is the set of nodes and
E CV xV is the set of edges. (i,j) € £ denotes an edge
from j € V to ¢ € V. We will leverage an equivalence class
between matrices and digraphs as follows: given A = [a;;] €
R™ ™ there is a one-to-one correspondence between A and
a weighted digraph that has n nodes V = {1,...,n} and a
directed edge from j to i with edge weight a;; if the matrix
element a;; is nonzero. Conversely, given G, we say that a
A € R™™ is consistent with G if (4, ) € € implies a;; = 0.
For a € RI€l, Ag(a) denotes the R™*"™ matrix consistent
with G and parametrized by a = ({ai;}(;,j)ee). For example,
for the graph in Fig. 1, a = (CL11,CL13, a21,023,a32, 434, a42)
and

a1 0 a3 0
a1 0 az3 0
Ag(a) =

0 as2 0 asz4

0 asz 0 O

A path in G is a sequence of edges (e1,es,...) such that
the origin node of each edge is the destination node of the
preceding edge. A graph is strongly connected if, for any
i,j € V, there is a path from i to j. A graph is complete if
there exists an edge connecting every pair of nodes, and it is
sparse otherwise. A closed path is a path whose initial and
final vertices coincide. A closed path is a cycle if, going along
the path, one reaches no node, other than the initial-final
node, more than once. A cycle of length equal to one is a
self cycle. A set of cycles that have no nodes in common is a
cycle family. With a slight abuse of notation, we will denote
a cycle family by f = {e1,eq,...}, where ej,e9,--- € &
are the edges involved in f. The length of a cycle family is
the number of edges involved in all cycles (equivalently, the
number of edges in {e1, ea, . .. }). The weight of a cycle family
is given by the product of the weights of all edges in the cycle
family (namely, H(i,j)ef a;;). See Fig. 1 for an illustration.

Projections and linear subspaces. Given a linear sub-
space M C R", its orthogonal complement is M+ := {x €
R" : 27y =0,V y € M}. Given two subspaces M, N C
R™, M NN = {0}, their direct sum is W:={u+v : u¢€
M, v € N} and denoted by W = M N; M, N C R" are
complementary if M®N = R". Given complementary sub-
spaces M, N C R", for any z € R", there exists a unique
decomposition z = x + y, where z € M and y € N. The
transformation IIaq ar, defined by IIxq a2 := 2, is called pro-
jection onto M along N, and the transformation ITxr a4 de-
fined by Iz a2 ==y is called projection onto N along M.
Vector z is the projection of z onto M along N, and y is the
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Fig. 1. (a) Illustration of a digraph and (b)-(c) associated ¢-long
cycle families, ¢ € {1,...,4} (a Hamiltonial {-decomposition is a
set of node-disjoint cycles such that the sum of the cycle lengths
is equal to £ ).
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projection of z onto A/ along M. A matrix IT € R"*" is a
projection onto some subspace if and only if II? = II. The
projection Il r41 onto M along Mt s called orthogonal
projection onto M. Because the subspace M uniquely de-
termines M=, we will denote in compact form IIy pqr by
ITp4. Projections that are not orthogonal are called oblique
projections.

Lemma 2.1 [17, Thm. 2.11 and Thm. 2.31] LetII €
R™ ™ be a projection with rank (II) = k. There exists an
invertible matriz T € R™*™ such that

I, O
00

O=T T

Moreover, if 11 is an orthogonal projection, then T can be
chosen to be an orthogonal matriz, i.e., TTT = I. |

Lemma 2.2 [17, Thm. 2.26] Let M, N be complemen-
tary subspaces and the columns of M € R™** and N € R™*F
form a basis for M and N'*, respectively. Then,

My =M(NTM)INT. i
We recall the following known properties [17, Thm. 1.60]:

Im(M") =Im(M") = Im(MTM) = Im(M " M),
ker(M) = Im(M ")t = ker(MTM) = Im(I — MTM).

From these properties and Lemma 2.2, given M € R™*",

we have

Myn(ar) = MMT, Myer(ary = 1 — MTM,

where Mt € R™*™ is the Moore-Penrose inverse of M.

3 Problem setting

In this section, we formalize the problem of interest and
motivate its applicability in multi-agent robotics.

3.1 Problem formulation

Consider a set of agents V = {1,...,n}, each characterized
by a scalar state z; € R, i € V. The agents interact with each
other to update their states, as described by a digraph G =
(V, ). Precisely, at every time, each agent i € V exchanges
its state with its neighbors and updates it as follows:

T; = Qi i + Z QijTj, (1)
JEN;

where N; = {j € V: (j,i) € £} is the set of in-neighbors of 7,
and a;; € R are parameters describing the magnitude of the
couplings. By setting A = [a;;], where a;; = 0if (4,7) € &,
and z = (z1,...,x,), the network dynamics are:

& = Ax. (2)

We say that the network reaches a k-dimensional agreement
if the state of the agents converge to k independent weighted
sums of the initial conditions.

Definition 3.1 (k-dimensional agreement) Let n, k €
Nso, and W € R™ ", with rank (W) = k. We say that (2)
globally asymptotically reaches a k-dimensional agreement
on W if, for any x(0) € R™,

lim z(t) = Wx(0). (3)

t—o0

When this holds, A is called a k-dimensional agreement al-
gorithm (or protocol). O

Definition 3.1 formalizes a notion of agreement between
the agents whereby, at convergence, the network’s state
is constrained to a k-dimensional space (precisely, the
space Im(W)). As observed in [5, Rem. 3.2], agree-
ment is a generalization of the classical average con-
sensus problem [28, 32]. Indeed, consensus amounts to
limy o0 ;(t) = limy_y oo ;(t), Vi,j € V, which is achieved
when k = 1, W = vw", and v = 1; hence, average consensus
is a special case of agreement.

According to [5, Prop. 4.2], linear protocols of the form (2)
can agree only on matrices W that are oblique projections.
Based on this conclusion, we make the following assumption.

Assumption 1 (Matrix of weights is a projection) The
matriz W in (3) satisfies W? = W and rank (W) =k. O

Accordingly, agreement protocols shall be utilized in dis-
tributed computation tasks where it is of interest to compute
some oblique projection of the network’s initial conditions.
See Fig. 2 for an illustration.



Remark 3.2 (Importance of projections in the appli-
cations) Orthogonal and oblique projections emerge natu-
rally in many practical engineering problems [2]: orthogonal
projections are used to compute solution to regression prob-
lems (e.g., see Section 7); oblique projections solve weighted
or constrained least-squares regression problems [2,11], and
are widely used in signal processing [3], subspace identifica-
tion [14], and more [2]. O

As observed in [5, Ex. 3.4], whether a group of agents can
reach an agreement depends on the choice of W and on the
topology G of the underlying interaction graph. In this work,
we are interested in addressing the following question: given
an arbitrary, pre-specified, matrix of weights W (as in As-
sumption 1), what are the graph topologies G that admit an
algorithm (2) that reaches an agreement on W? This ques-
tion inspires the following definition.

Definition 3.3 (Agreement on arbitrary weights) Let
k € Nsg and G be fized. The set of agents is said to be
globally k-agreement reachable on arbitrary weights if, for any
W e R™™"™ with rank (W) = k, there exists A such that (2)
globally asymptotically reaches a k-dimensional agreement
on W. m]

A necessary condition for a set of agents to be agreement
reachable on arbitrary weights is that the underlying interac-
tion graph G is strongly connected (see [5, Lem. 4.5]). Hence,
we impose the following.

Assumption 2 (Strong connectivity) The communica-
tion digraph G is strongly connected. O

Intuitively, because W is an arbitrary matrix, each entry of
the vector lim;_, o z(t) in general depends on the entire vec-
tor of initial conditions x(0) (cf. (3)). As a result, each entry
of the vector x(0) must be able to propagate to the entire
graph, hence requiring strong connectivity. Notice, however,
that strong connectivity is not sufficient for achieving agree-
ment, as the following example shows.

Example 3.4 (Strong connectivity does mnot imply
agreement reachability) Assume that a network of n = 3
agents is interested in agreeing on a space with £k = 2
by using a non-complete communication graph G. By us-
ing [5, Lem. 4.1], the agents are agreement reachable on
arbitrary weights only if:

000

Az[tl o tg} 000 [n 72 Tg}T:ﬁt?)TL;rv (4)
T oos| T oo

for some 3 such that $(5) < 0 and some T € R3*3. By (4),
A must be a rank-one matrix and, since G is not complete,
at least one of the entries of A must be identically zero.
These two properties imply that at least one of the rows or
columns of A must be identically zero, and thus that G cannot
be strongly connected. Since G is not strongly connected,
by [8, Cor 4.5] at least one of the rows or columns of W =
limy_, o0 e* must be identically zero. In summary, the agents
are globally 2-agreement reachable on arbitrary weights only
if G is the complete graph. o

In this work, we seek to characterize the structural prop-
erties of interaction graphs support agreement protocols on

Fig. 2. (a) Geometric interpretation of orthogonal projections: a
vector & € R? is projected onto M C R?. (b) Geometric inter-
pretation of oblique projections: M and N’ € R? are complemen-
tary subspaces and ¢ is projected on M along N. Notice that
the projection ray belongs to span(\).

arbitrary weights. Formally, we study the following problem.

Problem 1 (Characterization of the class of commu-
nication graphs that enable agreement) Determine a
class of communication graphs such that, for any graph in the
class, the group of agents is globally k-agreement reachable
on arbitrary weights. O

The answer to Problem 1 is fully known in the case of con-
sensus problems: a set of agents can reach a consensus on
some weights if and only if the interaction graph admits a
spanning tree [30] and a consensus on arbitrary weights if
and only if the graph is strongly connected [27,32]. By con-
trast, the question stated here of what topologies are agree-
ment reachable on arbitrary weights is novel and has not
been addressed in the literature.

3.2  Motivating application: mobile robotic formation

To illustrate the importance of designing agreement algo-
rithms, we next demonstrate how this problem provides a
natural solution to enforce a desired configuration in multi-
agent mobile robotics. Consider a group of n = 4 robots
modeled using single-integrator dynamics. Let 2:(0) € R* de-
note the x-coordinates of the robots’ positions at time 0 (we
refer to Section 6 for a generalization to the two-dimensional
case), and assume that the group is interested in achieving a
final formation z* such that 7 = 23, 25 = z} and that the
control energy used to reach such a formation is minimized.
Formally, the desired configuration is given by the solution
to:

2* = arg min z(0) — x|
gmin  [e(0) - ol

subject to: 1 = x9, T3 = T4. (5)
where || - |% denotes the square weighted norm defined by

R*** 5 R > 0. Further, because each robot has no knowl-
edge of global coordinates, this must be achieved through a
distributed coordination algorithm. By letting

1-10 0
D= :
lo 0 1—1]

the formation requirements can be encapsulated by the con-
straint Dz = 0, and the solution to (5) with R = I is given
by 2* = Ilyer(p)Zo- It is now immediate to see that x* can be
computed using an agreement algorithm, with W' = Ilye.(p)-



4 Structural necessary and sufficient conditions for
agreement

In this section, we provide necessary and a sufficient con-
dition for agreement reachability on arbitrary weights.
To present our results, it will be useful to interpret the
agreement protocol A in (2) as a matrix to be designed,
parametrized on the vector of edge weights a € RI€!, denoted
by Ag(a). See Section 2 for a presentation of the notation.

Theorem 4.1 (Graph-theoretic necessary condi-
tions) Consider the protocol © = Ag(a)x and let Assump-
tions 1-2 hold. The set of agents is globally k-agreement
reachable on arbitrary weights only if

E] > kn. (6)

O
PROOF. By [5, Lem. 2.1], W admits the decomposition:

I, 0
00

W=T T (7)

Let T = [tl tn] i, ...ty € R™; it follows from |[5,

Thm. 5.3] that & = Ag(a)x reaches an agreement if and only
if the following set of equations admits a solution a:

0=Ag(a)t;, ie{l,... k}, (8a)
pe= Y, IT @ te{t,....n—k} (8b)
£eC(9) (4,5)€€

The system of equations (8) to be solved consists of nk lin-
early independent linear equations and n— k nonlinear equa-
tions with |€| unknowns and n — k arbitrarily chosen real
numbers p1, ..., Pn_g. Due to the invertibility of matrix T,
the equations (8a) are linearly independent and thus generic
solvability of (8) requires the following necessary condition:
la| = |€| > nk, from which the claim follows. =

The inequality (6) provides two important types of bounds
on the structural properties of graphs that can sustain an
agreement protocol. First, for given n and k, (6) gives a lower
bound on the minimal graph connectivity required for agree-
ment. When k increases, (6) states that the number of edges
in G must grow at least linearly with k. Second, for a given
network topology G (and hence given n and &), (6) gives an
upper bound on the dimension of the allowable agreement
space: k < |€]/n. These bounds can be used to derive useful
insights into the relationship between agreement spaces and
graph topologies, as illustrated in the following examples.

Example 4.2 (Necessary conditions for agreement
using circulant digraphs) Consider the one-directional
circulant topology of Fig. 3(a). In this case, || = 2n and
thus (6) gives k < 2. Next, consider the bi-directional cir-
culant topology of Fig. 3(b). Here, |€| = 3n, and (6) gives
k < 3. In words, the one-directional circulant digraph can
support agreement on subspaces of dimension at most 2,
and the bi-directional circulant digraph on subspaces of
dimension at most 3.

° ° P *-o ° [ °
[} L] ° ® [ ) (]
® °
[ ] [ ° PS
4 [
L] F [ ] [
° o ° (o
o .9 -® \—) ° ® \) ®
1 in- (or out-) 2 in- (or out-) Q in- (or out-)
neighbor neighbors neighbors
(a) (b) (c)
o000 @ o000 o -0 e e o te "o ‘o

2 in- (or out-) neighbors Q¢ in- (or out-) neighbors

d) ()

—

Fig. 3. (a) One-directional circulant topology; (b)—(c) bi-direc-
tional circulant topology; (d)-(e) bi-directional line topology. The
graph in (a) is the least-connected graph topology that can reach
a 1-dimensional agreement on arbitrary weights (see Remark 4.4).
(b) and (d) also admit agreement protocols on arbitrary weights
within subspaces of dimension at most k = 1 (see Examples 4.2,
4.3). For (c) and (d), the connectivity of each node o must scale
proportionally with k. (see examples 4.2 and 4.3). In all plots,
all nodes have self-cycles, which are omitted here for illustration
purposes. Dashed lines illustrate the trend of edge increase as a
function of a.

Generalizing this idea, consider a bi-directional circulant di-
graph where each agent communicates with @ € Ny near-
est neighbors (see Fig. 3(c)). Using (6) with |€] = n(a + 1)
gives a > k — 1; in words, to support an agreement proto-
col on a k-dimensional space, each agent must communicate
with at least £ — 1 independent neighbors. o

Example 4.3 (Necessary conditions for agreement
using line digraphs) Consider the bi-directional line
topology of Fig. 3(d). In this case, || = n+2(n—1) and (6)
yields k < L3” 2J < 3. Similarly to the bi-directional cir-
culant digraph, the bi-directional line topology can support
agreement protocols on subspaces of dimension at most 3.

Generalizing, consider bi-directional line digraphs where
each agent communicates with o € N5 nearest neighbors
(see Fig. 3(e)). Using (6) with |£| = n+an—5(5 +1), gives
« > 2k — 1. By comparison, we conclude that agreement
protocols on line topologies (requiring o > 2k — 1) need a
higher connectivity in comparison to agreement protocols
on circulant digraphs (requiring o > k — 1). The reason
being that the cardinality of the edge sets of line topologies
is smaller than that of circulant topologies. O

Finally, we discuss the relationship between (6) and estab-
lished conditions for consensus in the following remark.

Remark 4.4 (Strong connectivity implies (6) when
k = 1) By interpreting the consensus problem as a spe-
cial case of agreement, it is easy to relate condition (6)
with established necessary conditions for consensus. Recall
that consensus on arbitrary weights can be reached if and
only if the underlying interaction graph is strongly con-
nected [27,32]. It is immediate to see that the graph with
the least number of edges that contains self-cycles and is
strongly connected is the circulant digraph (see Fig. 3(a)).
This graph has |€| = 2n. In this case, and assuming k& = 1
(consensus), (6) reads 2n > 1 - n, which holds true for any
n. We have thus found that condition (6) is automatically



satisfied for any digraph that can sustain an agreement
algorithm. O

The following result provides structural sufficient conditions
for agreement.

Theorem 4.5 (Graph-theoretic sufficient conditions)
Consider the protocol & = Ag(a)x and let Assumptions 1-2
hold and |E| > nk + n — k. If there exists a partitioning of
the edge parameters a = ({ai; } i j)ee) into two disjoint sets:

and

v ={a1,...,an_k} ae = {tny1,. .., a1},

such that:

(i) For all¢ € {1,...,n — k}, there exists an £-long cycle
family C;, such that ag € Cj;
(i1) Any edge in C; other than ay belongs to a.,
(i11) Anyl-long cycle family other thanC} that contains edges
i a, also contains at least one edge in a. that does not
appear in C},

then the set of agents is globally k-agreement reachable on
arbitrary weights. O

PROOF. Recall from [5, Thm. 5.3] that & = Ag(a)z
reaches an agreement if and only if there exists a stable poly-
nomial:

P()\) _ /\n—k—l +p1/\n—k—2 4. +pn—k—1- (9)

with coefficients p = (p1,...,Pn—k) such that there exists a
solution a* to the following set of algebraic equations:

0= Ag(a)t;, 1e{l,...,k}, (10a)

pe= Y (DM I ai, £€{1,....n—k}, (10b)
£€Ce(9) (1,5)€€

where t1,...,t; are as in (7). We will prove this claim by

showing that there exists a stable P(\) such that (10
a solution. Let P(\) be chosen as follows:

) admit

PN =A—a1) - (A—ap),

where its (either real or complex conjugate pairs) roots
a; € C,i € {1,...,n}, satisfy R(a;) < 0. Notice that
R(e;) < 0 imply that all the coefficients {pi,...,pn—k}
are non-negative. Since {a1,...q,} are arbitrary and for
any such choice each element of p = (p1,...,pn—k) iS non-
negative, we will seek solutions of (11) in a neighborhood of
p=0.

Since {ti,...,tx} are pre-specified (and linearly indepen-
dent), equation (10a) defines a set of nk linearly indepen-
dent equations in the variables a = (ac, a,), which we de-
note compactly as 0 = h(ac,a,), where h : RI€l — R"*,
Equation (10b) relates p and (ac, a,) by meas of a nonlin-
ear mapping p = g(ac, a,), where g : RI¥l — T is a smooth
mapping and 7 is smooth manifold in R"~*. Since g(-) is
a multi-linear polynomial, it is immediate to verify that it
admits the following decomposition:

g(am av) = 3

By denoting in compact form

L ag n—kxn—k
Glae, ay) = Da, cR ,
oh
H o y) nkxn—=k
(a 7a ) 80/1) IR’ )

the system of equations (10) can be rewritten as

0= H(aC Ay) Gy
= Glac, ay)ay.

(11a)
(11b)

As discussed above, we will now seek solutions to (11) in
a neighborhood of p = 0. By the Inverse Function Theo-
rem [33, Thm. 9.24], solvability of (11) in a neighborhood
of p=10is guaranteed when there exists a particular point
(a¥,ak) such that 0 = H(a},a})al = G(ak, ak)a’ and
G(ac,av) is invertible. To show this, we first notice that

a* = 0 is a solution of (11) for any a. € RI€I="+k, Thus,
we are left to show that there exists a choice a} such that
G(a},a}) is invertible. Thus, we will next provide an induc-
tive method to construct a such that G(af, a¥) is diagonally

c? v
dominant.

Let aél) € RI€I="F be an arbitrary choice for a. such that
all its entries are nonzero. Notice that condition (i) in the
statement guarantees that there exists a nonzero product

in entry (1,1) of G(aC ,ar), while condition (4) guarantees
that such product is independent of a}. Thus, by letting
G (ae,a,) := G(ac,a,), the matrix G(l)(agl),a:) can be
partitioned as:

Gy G (et ay)
G(l)( C ’a'l)) K
o) (at) ap) G (al!,a)

» v

where Gﬁ) € R, Gg € Rixn-k-1 Ggll)
G;lz) € Rr—k-Ixn=k=1 By condition (zz) and since all en-

tries of al") are nonzero, we have G11 ( ) # 0. Moreover,

either no element of @}, appears in any 1- long cycle famlly,
(1)

5 'U

—k—1x1
e R ,

in which case we have G(l)( a}) = 0 or, otherwise, by

condition (%ii), each entry in G (agl), al) is descrlbed by a

product that contams at least one scalar variable in a. (1) that

does not appear in Gll (a 2”). Denote such scalar variable by
a and notice that, by choosing a sufficiently small, the first
row of G can be made diagonally dominant. Thus, we up-
date at! as follows: a’?)

C C
is taken entrywise).

= min{a, ag)} (where the minimum

For the inductive step i, notice that G(* (ac ,ar) is diago-
nally dominant if G22 (ac ,ar) is diagonally dominant. Thus,
by defining GO+ (.,.) = Géﬁ(-,), ie{l,...,n—1}, by

() = min{&,agi)} (entrywise minimum), and by
iterating the argument, we conclude that G (a&"*’“), a¥) is di-
agonally dominant. Invertibility of G(a¥, a}) thus follows by

= g k) , which concludes the proof. =

letting ae

letting a

Theorem 4.5 characterizes a class of digraphs that admit
agreement protocols on arbitrary weights. Precisely, it iden-



(a) (b)

Fig. 4. (a) Example of a graph that admits a 2-dimensional
agreement protocol on arbitrary weights. (b) Graph obtained by
adding green edges to (a); this graph admits a 3-dimensional
agreement protocol on arbitrary weights. See Example 4.7.

tifies cycle families as a basic structural property that en-
sures the existence of an agreement protocol. Intuitively,
|€] > nk + n — k ensures that there is a sufficiently-large
number of free parameters in a to enforce the desired eigen-
structure, and the conditions (i)-(%ii) guarantees the exis-
tence of such a.

The applicability of Theorem 4.5 depends largely on the
problem of determining a partitioning of a into the two sets
a, and a.. An algorithm to determine whether such par-
titioning exists can be constructed by using ideas similar
to [35], where a, and a, are derived from a directed spanning
tree of G.

We conclude this section by discussing how Theorem 4.5
modifies under edge addition, and by demonstrating its ap-
plicability through an example.

Remark 4.6 (Agreement reachability under edge ad-
dition) It is important noting that cycle families do not van-
ish under edge addition; thus, if (7)- (%) hold for a certain
graph G, they continue to hold for any other graph obtained
by edge addition. To see this, denote by C;(G) the set of ¢-
long cycle families of G = (V, £). Suppose that G’ = (V', ')
is any graph such that V' = V and £ C £’. Since no edge
has been removed, the set of /-long cycle families of G’ sat-
isfies C¢(G) C C;(G). It follows that, if the agents are k-
agreement reachable on arbitrary weights when interacting
through G, then they are also k-agreement reachable on ar-
bitrary weights when the interaction graph is any graph ob-
tained by adding edges to G. m]

Example 4.7 (Illustration of the conditions in Theo-
rem 4.5) Consider the communication graph in Fig. 4(a).
The corresponding agreement protocol is:

a1 a2 a3 0 ags
as1 22 0 0 0
0 a3z azz azs O

0 0 ay3 Q44 0

las1 0 0 ass ass]

By Theorem 4.1, a necessary condition for agreement is

SEACE

Thus, we will fix k = 2. To illustrate the conditions of The-

orem 4.5, for simplicity, we let ass = a3z3 = agq = as5 = 0
(according to Remark 4.6, if the graph without self-cycles
has an independent set of cycle families, then the graph ob-
tained by adding these self-cycles will retain the same set of
decompositions). With this choice, the set of all /-long cycle
families, £ € {1,...,n — k}, is:

C1 = {{an}}
Co = {{a12,a21}, {ass, ass}, {a15,a51}},

Cs = {{a11, a4, ass}, {a13, a21,as2}}. (12)

By selecting a,, and a. as follows

Ay = {alla a12, a13}7

Qe = {a51, 54,021, A32, 434,143, a15}v

it follows that a set of ¢-long cycle families that satisfies the
conditions in Theorem 4.5 is:

CT = {011}, C; = {612,021}7 C§ = {0137021,032}-

Indeed, with this choice, the set of equations (8b) reads as:

D1 -1 0 0 ail 0
p2| = 0 —ag 0 a2 | — (7]
D3 azsass 0 —agiasz| |ai3 0

where v = asqa43 + a15a51, which is generically solvable
for any (p1,p2,p3) € R3. Any choice of weights such that
a1 > 0 and |agiasa| > |assaqs| guarantees that the above
matrix is invertible and thus the set of equations is solvable.

To achieve agreements on subspaces of dimension k = 3,
consider the graph in Fig. 4(b), obtained by adding edges to
the graph of Fig. 4(a). The necessary condition (6) yields

I€] 15
k< |G 12 =3
<|B]- 2] ==
which is satisfied. The set of cycle families (12) shall be mod-
ified to:

C1 = {{an1}},

Co = {{a12,a21},{asa, ass}, {ai5,as51},{az3, as2}}.

By selecting a,, and a. as follows

Ay = {(1117012},
Qe = {a13, 23, 45, 435, 451, 54, A21, A32, @34, @43, 015},

a set of cycle families that satisfies Theorem 4.5 is:
Ci = {an}, C; ={a12,a21},

thus showing that the sufficient conditions also hold. O

5 Extensions to tracking dynamics for agreement

In analogy with consensus protocols [22], agreement algo-
rithms can be modified to track the oblique projection of a



time-varying forcing signal u(¢) (in place of (0) as in (3)).
Given a dgraph G, consider the network process:

&= Az + 1, (13)
where A is chosen so that (3) holds and v : R>¢9 — R”
is a continuously-differentiable function. In this framework,
the i-th entry of @ is known only by agent 4, and the goal
is to construct an algorithm with state x(t) that tracks
Wu(t), asymptotically. The protocol (13) can be interpreted
as a generalization of the dynamic average consensus algo-
rithm [22], where the communication matrix is an agreement
matrix instead than a Laplacian. The following result char-
acterizes the transient behavior of (13).

Proposition 5.1 (Convergence of dynamic agreement
protocol) Consider the update (13) and let A be such that (3)
holds. Then, for allt > 0:

l2(t) = Wub)]| < e [l(0) - Wu(0)] + i sup [a(T)],

0<r<t

(14)

where X = A\pax (AJFQAT). O

PROOF. The proof is inspired from [22, Thm. 2] and ex-
tends the result to non Laplacian-based protocols and non
weight-balanced digraphs. Let W be decomposed as in (7),

and consider the following decompositions for Ty, and T, V}lz

Tw=[nn), @) =0 (15)

where T1,U; € R and Ty, Uy € R™ "% Let e = = —
Wu denote the tracking error, and consider the change of
variables e = T‘;,le. In the new variables:

e =Ty (@ — Wu)
=Ty ATwe + Ty  AWu + Ty ta — Ty Wi,
= Ty! ATwe + Tyt a — Ty Wi,
where the last identity follows by using (7), which implies

AW = 0. By substituting (15) and by noting that T*W =
[0, 0"

. |UTAT, UTAT, 0.
e = u
Uy ATy Uq ATy Uy
0 0
= e+ u, (16)
Ug ATy Uy

where the last inequality follows by noting that 0 =
U AT, = U = AT according to [5, Thm. 5.3 - cond. (i)].

Next, decompose e = (e1, e2) and & = (&1, €2), where ey, €; €
RF and ey, & € R" %, and notice that the following identi-
ties hold:

62 = U;—e,

e = Tgég. (17)

The first identity follows immediately from (15), while the
second follows from (15) and &;(¢) = 0 at all times. To see
that €, (t) = 0Vt > 0, notice that &, (0) = U{ (z(0) —u(0)) =
0 thanks to the initialization (13), and & = 0 according
to (16). By using (17), we conclude that é = Ae + u, from
which (14) follows by noting that

t
e(t) = exp(A1) -e(0) + | exp(A(t — 1) Bi(r)r
0
and by using || exp(At)|| < exp <_/\max (M) t).

The error bound (14) shows that the dynamics (13) are
input-to-state stable [36] with respect to 4. It follows that,
for any forcing signal w(t) with bounded time-derivative,
the tracking error ||x(t) — Wu(t)|| is bounded at all times.
As a special case, if lim; o u(t) = v* € R"™ (namely,
limy oo @(t) = 0), then lim; oo 2(t) = Wu*.

6 Applications to robotic formation control

We next illustrate the applicability of agreement protocols
to solve formation problems [26] in multi-agent robotic net-
works. Consider a team of n = 8 planar single-integrator
robots initially arranged on a unit circle (grey lines in
Fig. 5(a)-(c)). By using x- and y-coordinates to describe
the robots’ positions, the network’s initial state is given by:
zo = (cos(0),sin(0),cos(Z),sin(Z),...,cos(Z),sin(ZF)) €
R'6. To account for planar coordinates, the state of (2) is
partitioned into x and y coordinates, and the algorithm (2)
reads as:
= (A® L)z, x(0) = xo.

For our simulations, we utilized the circulant communication
topology in Fig. 5(b) with @ = 4, and agreement protocols
A have been constructed by solving numerically the set of
equations (10b). Simulation results are shown in Fig. 5.

In Fig. 5(a) and (d), we report the state trajectories ob-
tained by choosing £k = 1 and W = %]l]lT. Notice that, in
this special case, the agreement algorithm simplifies to an
average consensus algorithm [28]; as expected for consensus,
the robots meet at (0,0), which coincides with the average
of the initial conditions. This special case corresponds to the
robotic rendezvous problem [26]. In Fig.5(b) and (e), we il-
lustrate the state trajectories obtained by choosing k = 3,
W = 1Irq, where Il is the orthogonal projection onto
M = ker(My),

M1=[1—1—11}.

Matrix M7 encodes attraction and repulsion forces between
the robots at convergence. Indeed, from z(oc0) € ker(M; ®
I), it follows that:

2
2 (18)

=
g
_|_
<
=N
g
Il
<

Simulation results are illustrated in Fig.s 5(b) and (e). Fi-
nally, we illustrate in Fig.s 5(d) and (f) the robots’ trajec-
tories obtained by choosing the oblique projection: W =
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Fig. 5. (a)-(c) Time evolution of the positions of the 8 robots and (d)-(f) trajectories of the z— and y—coordinates. (a) and (d)
Consensus protocol, which allows the robots to achieve rendezvous. (b) and (e) Agreement protocol on an orthogonal projection
onto ker(M1). (¢) and (f) Agreement on an oblique projection on ker(M;) along Im(N7). See Section 6.

an, M =ker(My), N = Im(Ny), where
NT = [-155 1],

The use of an oblique projection can be interpreted as a non-
homogeneous weighting for the vector that defines the final
configuration. Indeed, as shown by the figure, in this case,
the robots no longer meet “halfway”, instead, robots 2 and 3
(analogously, 6 and 7) travel a longer distance as compared
to robots 1 and 4 (analogously, 5 and 8).

7 Conclusions

We investigated structural properties of graphs that enable
a set of agents to agree within a k-dimensional space. We
showed that agreement protocols require a high network con-
nectivity, which must scale with the dimension of the agree-
ment space k. We identified cycle families as a basic struc-
tural property that enables agreement and, using cycle fam-
ilies, we characterized a class of graphs that supports agree-
ment protocols. Although our conditions are structural and
easy to check, we infer that the the class of graphs that
admit agreement protocols is much larger in practice. This
work opens the opportunity for several directions of future
research: among them, we mention the use of nonlinear dy-
namics for agreement, the development of algorithms for dis-
tributed protocol synthesis, and the investigation of applica-
tions in distributed optimization. Moreover, closing the gap
between the proposed necessary conditions and the sufficient
conditions remains an interesting direction for future work.
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