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Abstract

This paper considers the problem of controlling distributed energy resources (DERs) in a distribution network (DN); the paper
focuses on the voltage regulation task and on the concept of virtual power plant (VPP). For the latter, we envision an aggregation
of DERs as a VPP that tracks power setpoints at the point of common coupling to provide ancillary services to the bulk power
system. We propose a feedback-based controller that pursues solutions to a time-varying AC optimal power flow problem. This
controller ensures voltage constraints are met in real time, assuming no voltage measurement errors. The feedback from the
system mitigates the controller sensitivity to model uncertainties and eliminates the need for measurements of uncontrollable
loads at every node. The feedback-based controller is tested on the IEEE37-node system with delta and wye-connected devices
in a strongly unbalanced configuration.

1 Introduction

Rising energy costs and government incentives for promot-
ing the adoption of renewable energy sources (RESs) create
a significant change in distribution networks (DN). Increas-
ing integration of RESs creates bidirectional power flows that
can jeopardize power quality, operational efficiency, and reli-
ability [1]. Traditionally, slow-acting controllers, such as load
tap changers or switched capacitors, regulate voltages in DNs,
but the variability of RES production renders slow-acting con-
trollers inefficient and can shorten their lifespan [2]. At the
transmission level, large-scale synchronous generators provide
voltage and frequency regulation, but the decommissioning of
conventional power plants challenges power system stability.
On the other hand, the continuous improvements in power elec-
tronic converters pave the way for new regulation techniques.
Distributed energy resources (DERs) can now provide ancil-
lary services to the bulk power system while mitigating voltage
issues within DNs [3].

A virtual power plant (VPP) [4] is an aggregation of DERs
in a DN that provides ancillary services to the bulk power sys-
tem while satisfying operational constraints within the DN. A
traditional VPP regulation approach involves solving an AC
optimal power flow (AC-OPF) problem in an open-loop fash-
ion to dispatch DER setpoints. Such an approach is inadequate
for real-time optimization for three reasons [5]. First, it requires
measuring the net power injections at every node, which might
be hard to achieve in DNs. Second, the DN dynamics might
be faster than the time required to solve the AC-OPF because
of the computational complexity, thus leading to outdated set-
points. Finally, the AC-OPF is solved in an open-loop fashion
and is therefore prone to modeling errors. One can opt for

distributed approaches to reduce the AC-OPF problem com-
plexity, but these methods may be slow to converge, and the
obtained setpoints may eventually be outdated [6].

Other approaches suggest using learning-based methods.
One advantage is the speed-up during the inference phase when
the model predicts a solution to the AC-OPF problem [7, 8].
On the other hand, those methods suffer from two significant
drawbacks [9]: data availability and the lack of a worst-case
guarantee. In some critical applications, learning-based AC-
OPF solvers cannot always satisfy operational constraints. To
address those challenges, [9] proposes a physics-informed neu-
ral network that alleviates data quality and size requirements
and provides guarantees for constraints violation. However,
these methods require knowledge of the net power injections
at every node.

In recent years, several works have focused on online or
real-time algorithms for solving the AC-OPF problem [6]. The
task is to design a real-time feedback controller that pursues an
optimal trajectory for the AC-OPF problem while guaranteeing
closed-loop system stability. In particular, our recent work [10]
leverages the theory of control barrier functions to ensure that
the feedback-based optimization method always satisfies volt-
age constraints. The safe gradient flow has first been proposed
in [11], but the novelty in [10] is the introduction of the feed-
back to track varying grid conditions. This method pursues
time-varying solutions to an AC-OPF problem.

Contributions: In this paper, we leverage the algorithm
developed in [10] and extend it to a 3-phase unbalanced DN,
with wye and delta-connected sources. We consider the prob-
lem of regulating a VPP such that it can track power references
at the substation while meeting voltage constraints within the
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Fig. 1: Feedback-based safe gradient flow controller

DN. Figure 1 illustrates the working principle of the algorithm.

The power system model and the AC-OPF are introduced in
Section 2, in Section 3 the feedback-based safe gradient flow
controller is presented, we show numerical results in Section 4,
and finally, Section 5 concludes the paper.

2 Problem formulation

2.1 Power system model

We consider a generic three-phase DN with N + 1 nodes∗

and a combination of wye-connected and delta-connected
sources. The node 0 is taken to be the substation node,
while N := {1, ..., N} is the set of remaining nodes.
Let sYj := {saj , sbj , scj}⊤ denote the vector of net complex
phase-to-ground power injections on each phase {a, b, c}
at node j. Similarly, let s∆j := {sabj , sbcj , scaj }⊤ denote
the vector of net complex phase-to-phase power injec-
tions at node j on each phase connections {ab, bc, ca}.
Let us denote vj := (va

j , v
b
j , v

c
j)

⊤, ij := (iaj , i
b
j , i

c
j)

⊤, i∆j :=
(iabj , ibcj , icaj )⊤ the vectors collecting the phase-to-ground
voltages, the phase current injections, and the phase-to-
phase currents for node j, respectively. We define the fol-
lowing quantities v := {(vj)

⊤}⊤j∈N , i := {(ij)⊤}⊤j∈N , i∆ :=
{(i∆j )⊤}⊤

j∈N , sY := {(sYj )⊤}⊤j∈N , s∆ := {(s∆j )⊤}⊤
j∈N to express

∗Notation: upper-case (lower-case boldface) letters are used for matri-

ces (column vectors); (.)⊤ denotes transposition and (.)∗ the complex-

conjugate; j the imaginary unit and |.| the absolute value of a number. If

we consider a given vector x ∈ RN , diag() returns a N ×N matrix with

the element of x in its diagonal. For vectors x ∈ RN and u ∈ RM , ∥x∥2
denotes the ℓ2-norm and (x,u) ∈ RN+M denotes their vector concate-

nation. C denotes the set of complex numbers and for a vector y ∈ CN ,

R(y) ∈ RN denotes its real part and I(y) ∈ RN its imaginary part.

the power flow equations in matrix form [12]:

diag
(
H⊤(i∆)∗

)
v + sY = diag(v)i∗,

s∆ = diag(Hv)(i∆)∗,

i = YL0v0 + YLLv,

sY0 = diag(v0)(Y
∗
00v

∗
0 + Y ∗

0Lv
∗),

(1)

where Y00, YL0, Y0L, YLL denote the submatrices of the three-
phase bus admittance matrix

Y :=

[
Y00 Y0L

YL0 YLL

]
∈ C3(N+1)×3(N+1), (2)

that can be derived from the network topology and the π-model
of the distribution lines, and H is a block-diagonal matrix
defined by

H := diag(Γ), Γ :=

 1 −1 0
0 1 −1
−1 0 1

 . (3)

One can find the solution v of the set of equations (1),
with known sY , s∆ and v0, using the following fixed-point
equation [12]:

v = w + Y −1
LL

(
diag(v∗)−1(sY )∗ +H⊤diag(Hv∗)−1(s∆)∗

)
,

(4)
where w := −Y −1

LL YL0v0 is the zero-load voltage.
For convenience, we define the algebraic maps V :=

C3N+3N+3 7→ C3N and S := C3N+3N+3 7→ C3 such that v =
V (sY , s∆,v0) and s0 = sY0 = S(sY , s∆,v0). These maps cor-
respond to the practical solution –high voltage, low line
currents solution– of the power flow equations described in (1).

Remark 1. The existence of the maps V and S are based on
the Implicit Function Theorem, and the results of, e.g., [13].
Notice that one can only obtain an analytical formulation of
such maps in particular conditions. Also, replacing v by w on
the right-hand side of the fixed-point equation (4) gives a first-
order approximation of the map V for sY ≈ 0, s∆ ≈ 0.

2.2 Problem setup

The goal is to coordinate DERs injections to regulate voltage
magnitudes within the DN while tracking power reference set-
points at the substation Sset := {Pϕ,set, Qϕ,set}⊤

ϕ∈{a,b,c}, where
Pϕ,set, Qϕ,set represent the active and reactive power setpoint at
the substation for each phase ϕ, respectively. We formulate the
following optimization problem:

min
sY ,s∆,v0

f(sY , s∆,v0)

s.t. vmin ≤ |V (sY , s∆,v0)| ≤ vmax,

− E ≤ S(sY , s∆,v0)− Sset ≤ E,

sY , s∆ ∈ S,

(5)

where vmax,vmin denote the vectors of maximum and mini-
mum voltage magnitudes, E is a scalar that can be arbitrary
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small to track power reference setpoints and S represents the
hardware limits of DERs, i.e., maximum and minimum power
injections. One can design the objective function f(.) to mini-
mize the usage of reactive power compensation or active power
curtailment or may favor the minimization of system losses
or voltage deviations from a nominal voltage profile. First, for
clarity, let us consider the case when the power injection at each
node is controllable in problem (5). We will further distinguish
controllable and non-controllable sources in the final problem
formulation. Also, one can consider other constraints, such as
maximum line ampacity. Solving problem (5) is challenging
because it contains non-linear constraints and is known to be
non-convex. Furthermore, the solution to problem (5) heavily
depends on the model parameters (e.g., the elements of Y ), and
there is no guarantee one can satisfy operational constraints
under model uncertainties. In the following section, we pro-
pose a feedback-based safe gradient flow controller, built as a
quadratic programming problem, incorporating feedback from
the system to cope with model uncertainties.

3 Feedback-based safe gradient flow

3.1 Safe Gradient Flow design principle

Consider the admissible set F = {x ∈ C3N+3N+3 | g(x) ≤ 0},
where x := (sY , s∆,v0) and g(x) is a vector-valued function
representing the constraints of problem (5). We can write the
problem (5) as:

min
x∈F

f(x). (6)

If x̄ ∈ F is a local optimizer of problem (6) and assuming some
mild regularity assumptions hold at x̄ (see [10]), then it exists
ȳ such that the Karush-Kuhn-Tucker (KKT) conditions hold:

∇f(x̄) +
∂g(x̄)⊤

∂x
ȳ = 0, (7a)

g(x̄) ≤ 0, ȳ ≥ 0, (ȳ)⊤g(x̄) = 0. (7b)

As proposed in [11], for solving problem (6), one can consider
the following control-affine system:

ẋ = −∇f(x)− ∂g(x)⊤

∂x
y, (8)

that can be interpreted as the standard gradient flow, with a
drift term depending on the control actions y. The general idea
is to find the control actions y such that the admissible set F
is forward-invariant; if the system states x start inside the set
F , the state trajectories are confined in that set at all times.
Furthermore, if the system states start outside the admissible
set F , the system trajectories should converge to the admissible
set F . One can obtain the control actions y♯ by solving:

y♯ = arg min
y∈Kβ(x)

∥∥∥∥∂g(x)⊤∂x
y

∥∥∥∥2

2

(9)

where the drift term is minimized, and the admissible set for y:

Kβ(x) :=

{
y ∈ C6N+3

∣∣∣∣− ∂g

∂x

∂g

∂x

⊤
y ≤ ∂g

∂x
∇f(x)− βg(x)

}
(10)

is defined such that the set F is forward-invariant, with β > 0 a
design parameter. The set Kβ(x) is inspired by Control Barrier
Functions arguments [14], and obtained considering F as the
safe set, and g as a vector-control barrier function (see [11] for
further details). In [11], it is shown that (8) with the control
actions obtained solving (9) is equivalent to dynamics of the
form ẋ = Fβ(x) with

Fβ(x) := arg min
θ∈C3N+3N+3

1

2
∥θ +∇f(x)∥2

2

s.t.
∂g(x)

∂x

⊤

θ ≤ −βg(x).

(11)

3.2 Linear approximation of the three-phase power flow
equations

As shown in (11), one needs explicit formulation of the maps
V (.) and S(.). As mentioned in Remark 1, there is no explicit
formulation for V (.) and S(.). Therefore, we leverage the
linear approximations proposed in [12]:

|V (sY , s∆,v0)| ≈ KY xY +K∆x∆ + b,

S(sY , s∆,v0) ≈ GY xY +G∆x∆ + c,
(12)

where xY := ((pY )⊤, (qY )⊤)⊤ and x∆ := ((p∆)⊤, (q∆)⊤)⊤

with pY := R{sY }, qY := I{sY }, p∆ := R{s∆}, q∆ :=
I{s∆} collecting the active and reactive power injections. In
the following, we detail how to construct the different matrices
presented in (12) (see [12] for detailed derivations). We define
(v̂, ŝY , ŝ∆) as a given solution of the fixed-point equation (4).
We then write:

MY := (Y −1
LL diag(v̂∗)−1,−jY −1

LL diag(v̂∗)−1) ,

M∆ :=
(
Y −1
LL H⊤diag(Hv̂∗)−1,−jY −1

LL H⊤diag(Hv̂∗)−1
)
,

KY := |diag(w)|R{diag(w)−1MY },b := |w|,
K∆ := |diag(w)|R{diag(w)−1M∆},
GY := diag(v0)Y

∗
0L(M

Y )∗, G∆ := diag(v0)Y
∗
0L(M

∆)∗,

c := diag(v0) (Y
∗
00v

∗
0 + Y ∗

0Lw
∗) .

(13)
For the rest of the paper, we consider constant matrices
obtained from (w,0,0), that is a solution of (1). However, one
can improve the quality of the linear approximation by con-
structing the matrices based on the current operating conditions
(v̂, ŝY , ŝ∆), which requires measuring the voltages and power
injections at every node in real-time.

3.3 Design of the controller

First, let us define the vector uc = ((xY
c )

⊤, (x∆
c )

⊤) ∈ CU ,
where xY

c ,x
∆
c contain the power injections of the DERs.

The number U depends on the number of DERs, and
their connection type (1-phase or 3-phase connection). Simi-
larly, we define unc = ((xY

nc)
⊤, (x∆

nc)
⊤) ∈ C3N+3N−U the vec-

tor of non-controllable sources. For simplicity, let us con-
sider that the voltage at the substation v0 cannot be con-
trolled and is held constant to 1 pu. Furthermore, we con-
sider that, for each controllable source, the feasible set
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describing the hardware limits is defined as S := SY ∪
S∆, with SY := {0 ≤ pY

j,ϕ ≤ pY
j,ϕ,max, (p

Y
j,ϕ)

2 + (qY
j,ϕ)

2 ≤
(sYj,ϕ,nom)

2, |qY
j,ϕ| ≤ 0.44sYj,ϕ,nom}j∈GY ,ϕ∈{a,b,c}, S∆ := {0 ≤

p∆
j,ϕ ≤ p∆

j,ϕ,max, (p
∆
j,ϕ)

2 + (q∆
j,ϕ)

2 ≤ (s∆j,ϕ,nom)
2,

|q∆
j,ϕ| ≤ 0.44s∆j,ϕ,nom}j∈G∆,ϕ∈{ab,bc,ca}, where GY ,G∆ are the

set of nodes to which wye-connected, delta-connected DERs
are connected, respectively. The feasible set S is such that
each phase is constrained independently. Finally, let us denote
the vector-valued function ℓ(uc) such that we can write S :=
{uc ∈ CU | ℓ(uc) ≤ 0} for simplicity. We now formulate an
algorithmic solution to the problem (5):

Fβ(uc,unc) :=

arg min
θ∈CU

1

2
∥θ +∇f(uc)∥2

2

s.t. K⊤
c θ ≤ −β

(
K⊤

c uc +K⊤
ncunc + b− vmax

)
−K⊤

c θ ≤ −β
(
vmin −K⊤

c uc −K⊤
ncunc − b

)
G⊤

c θ ≤ −β
(
G⊤

c uc +G⊤
ncunc + c− Sset − E

)
−G⊤

c θ ≤ −β
(
E −G⊤

c uc −G⊤
ncunc − c+ Sset

)
∇ℓ(uc)

⊤θ ≤ −βℓ(uc),

(14)

where Kc,Knc, Gc, Gnc contain the appropriate elements of
matrices KY ,K∆, GY , G∆. The problem defined in (14)
requires the measurements of the non-controllable powers unc

and relies on the power system model (12). Using appropri-
ate measurements, one can construct an optimization-based
feedback controller that naturally tracks the time-varying grid
conditions. Let us define ṽ the vector collecting the voltage
measurements at each node, and s̃ the vector collecting the
three-phase apparent power at the substation, one can write an
approximation of (14) where measurements are appropriately
added to the algorithmic solution:

Fβ(uc, ṽ, s̃) :=

arg min
θ∈CU

1

2
∥θ +∇f(uc)∥2

2

s.t. β (vmin − ṽ) ≤ K⊤
c θ ≤ −β (ṽ − vmax)

β (E − s̃+ Sset) ≤ G⊤
c θ ≤ −β (s̃− Sset − E)

∇ℓ(uc)
⊤θ ≤ −βℓ(uc).

(15)

Remark 2. The number of constraints in problem (15) depends
on the number of DERs and the number of voltage-regulated
nodes. If the system operator enforces voltage limits on a subset
of the set of nodes: M ⊂ N , one needs only voltage measure-
ments at nodes that belong to that subset M. That is a major
difference compared to traditional techniques to solve AC-OPF
which require load measurements at every node (as shown in
problem (14) for instance).

We implement the following controller:

uc(t+ 1) = ∆t (uc(t) + ηFβ(uc(t), ṽ(t), s̃(t))) , (16)

which is the forward Euler discretization of the feedback
controller u̇c = ηFβ(uc, ṽ, s̃), with η as controller gain.
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Fig. 2: Modified IEEE37-node feeder

Remark 3. Notice that uc in (15) can be obtained from mea-
surements of the DERs’ injected powers, rather than coming
from the previous setpoints deployed. This is needed if the
DERs’ controllers are not guaranteed to implement the power
setpoints, i.e., if there is a deviation between uc and what is
deployed.

4 Experimental results

4.1 Simulation setup

We consider the IEEE37-node feeder shown in Fig. 2 with
a 4.8 kV operating voltage. We modified the original bench-
mark, which contained only delta-connected loads, to incor-
porate delta and wye-connected DERs. We did not implement
DERs’ dynamics as they are considered much faster than the
controller dynamics. The power setpoints are instantaneously
implemented. We only consider PV plants as DERs, with the
hardware limits defined by the set S and pmax representing
the available power derived from the solar irradiance. We also
define the following cost function:

∑
j∈GY

∑
ϕ∈{a,b,c}

cp(p
Y
j,ϕ − pY

j,ϕ,max)
2 + cq(q

Y
j,ϕ)

2

+
∑
j∈G∆

∑
ϕ∈{ab,bc,ca}

cp(p
∆
j,ϕ − p∆

j,ϕ,max)
2 + cq(q

∆
j,ϕ)

2, (17)

such that the active power curtailment and the usage of reactive
power are penalized, with cp = 3 and cq = 1. The load profiles
and maximum available power aggregated for each phase with
a granularity of 10 seconds are shown in Fig. 3. The network is
strongly unbalanced.

The results obtained with the feedback-based safe gradient
flow (SGF) are compared with the results of the problem (5)
with the linear model of the 3-phase power flow equations (12).
The latter corresponds to a linear formulation of the AC-OPF
(L-AC-OPF) solved in an open-loop fashion. We consider that
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the SGF receives new measurements, computes new power set-
points and DERs deploy the new power setpoints every second,
while the grid conditions (unc) change every 10 seconds. We
enforce voltage limits, vmin = 0.95,vmax = 1.05, only on a
subset of nodes, highlighted in green in Fig. 2. These nodes
have been selected such that the voltage magnitudes of the
other nodes stay within the lower and upper voltage limits.
We also enforce power tracking at the substation from hours
9 : 00 to 11 : 00 and from hours 14 : 00 to 15 : 00. Finally, we
consider two scenarios, one with accurate estimation of line
impedances, and the other with the line impedances under-
estimated by 20%. It influences the admittance matrix, and
therefore the linear model parameters.

Results with no error in the admittance matrix: In Fig. 4, we
compare the voltage magnitudes for different phases when the
power setpoints are obtained from the L-AC-OPF and SGF
algorithms. One can see that the voltage magnitudes of voltage-
regulated nodes stay within the limits. However, while the
voltage constraints are tight for SGF, the L-AC-OPF yields
lower voltage magnitudes. This is due to the linear model,
which overestimates the voltage magnitudes for the L-AC-OPF
algorithm, while the SGF algorithm uses voltage measure-
ments. Fig. 5 shows that both algorithms can track the power
setpoints at the substation from hours 9 : 00 to 11 : 00 and
from hours 14 : 00 to 15 : 00. However, the error for the L-AC-
OPF is larger than the error for the SGF because of the linear
model inaccuracy. We show both algorithms’ DERs active
power injections in Fig. 6. There is more active power curtail-
ment with L-AC-OPF than with SGF because the linear model
overestimates the voltage magnitudes, forcing the L-AC-OPF
to produce a greater effort. This is also reflected in the value
of the cost function as the total cumulative cost over the day is
44.030 for the SGF and 65.201 for L-AC-OPF.

Results with error in the admittance matrix: In Fig. 7, we
compare the voltage magnitudes for the two algorithms when
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the linear model is constructed based on underestimated line
impedances. The voltages stay within the limit for the SGF,
while the L-AC-OPF induces voltage magnitudes excursions
outside of the admissible values. This shows that feedback-
based algorithms are more robust to modeling uncertainties
than traditional algorithms solved in an open-loop fashion.

Discussion on error in the measurements: One may say that
feedback-based controllers are sensitive to measurement errors,
which is true. However, traditional approaches to solving the
AC-OPF also require measurements of load consumption,
which are also subject to errors. The major difference is that
for the proposed SGF algorithm, one can assess the maximum
error on voltage measurements, and adapt the voltage thresh-
olds to guarantee safe voltages throughout the network, e.g.,
if the voltage measurements are perturbed with a maximum
error ε, one can tighten the voltage limits such that [vmin,vmax]
becomes [vmin + ε,vmax − ε]. For the L-AC-OPF, the error
affects the load consumption, and one needs to propagate this
error through the power system model to analyze the effect of
those errors on voltages.

5 Conclusions

We have presented a feedback-based safe gradient flow con-
troller for the optimal regulation of a VPP. The controller steers
power injection of DERs to enforce voltage constraints at any
time, and track power references at the substation. The con-
troller does not necessitate load measurements at every node,
and is robust against modeling errors due to the feedback addi-
tion. The controller has been tested on the IEEE37-node feeder,
and compared with a linearized version of the AC-OPF. The
results show superior performance of the feedback-based safe
gradient flow controller compared to the linear AC-OPF, and
constraint satisfaction even in the presence of modeling errors.
Future work will consider a detailed robustness analysis of the
controller against measurement errors, and additional assets
such as batteries.
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