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Abstract—The increasing integration of renewable energy
resources into power grids has led to time-varying system inertia
and consequent degradation in frequency dynamics. A promising
solution to alleviate performance degradation is through the use of
power electronics interfaced energy resources such as renewable
generators and battery energy storage for primary frequency
control, by adjusting their power output set-points in response to
frequency deviations. However, designing a frequency controller
under time-varying inertia is still challenging. In this paper, we
model the frequency dynamics under time-varying inertia as a
nonlinear switching system, where the frequency dynamics under
each mode are described by the nonlinear swing equations and
different modes represent different inertia levels. We identify a key
controller structure, named Neural Proportional-Integral (Neural-
PI) controller, that guarantees exponential input-to-state stability
for each mode. To further improve the controller performance,
we present an online event-triggered switching algorithm to
dynamically select the most suitable controller from a set of
Neural-PI controllers, where each controller in the candidate
pool is optimized for a specific inertia level. Simulation results
obtained from the IEEE 39-bus system validate the effectiveness
of the proposed online switching control method with stability
guarantees and optimized performance for frequency control
under time-varying inertia.

Index Terms—Power system dynamics, primary frequency
control, nonlinear and hybrid systems, reinforcement learning.

I. INTRODUCTION

Frequency stability is vital for the security and operation
of power systems, the goal of which is to balance power
generation and demand to maintain the system frequency
near its nominal value (i.e., 60 Hz in the US). This paper
mainly focuses on primary frequency control, which corrects
immediate power imbalances within seconds [1]. The surge in
integrating renewable energy sources like wind, solar, while
marking significant progress towards sustainability, introduces
larger fluctuations in net loads due to their unpredictable power
outputs, thus requiring more advanced controllers [2]. Moreover,
many of these new technologies are interfaced with the grid
through power electronic interfaces (i.e., inverters), which have
no rotational inertia. At the same time, the grid still has a large
number of synchronous components, creating a system that
is a mixture of conventional machines and inverter-connected
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Fig. 1: The proposed online switching control method for
frequency control under variable inertia with stability guarantee.

resources. The amount of inertia depends on the amount of
online synchronous generators. When renewables displace
a different amount of power generation from synchronous
machines at different times of the day, this leads to reduced
and time-varying system inertia [3]. The resulting complexity
has been linked to a noticeable degradation in system frequency
dynamics [4]–[6], risking load shedding and blackouts.

To tackle the challenge of frequency control under time-
varying inertia, we model the system as a nonlinear switching
system between different inertia levels, where the switching
signal is unknown to the controller beforehand. We first identify
a key controller structure, named Neural Proportional-Integral
(Neural-PI) control, that guarantees exponential input-to-state
stability (Exp-ISS) of the nonlinear frequency dynamics under
an arbitrary, fixed inertia mode, through Lyapunov analysis.
The Neural-PI structure is firstly introduced in [7] for frequency
control under time-invariant inertia with asymptotic stability
guarantee. In this work, we first improve the analysis of [7] to
show the Neural-PI controller guarantees Exp-ISS for the time-
invariant system, and then extend the Exp-ISS guarantees of the
Neural-PI controller to nonlinear switching systems. To further
improve the controller performance, we propose an online event-
triggered switching algorithm for dynamic controller selection
from a set of pre-trained Neural-PI controllers, each of which
is trained under a specific inertia level, and the switching
algorithm online updates the selection probability according
to their performance. Fig. 1 illustrates the proposed online
switching control algorithm. We prove the online switching
algorithm can maintain the closed-loop stability guarantees and
demonstrate significant performance improvement compared
to using a pre-trained controller without online switching.

We summarize the main contribution of this paper as follows:
• We identify a key controller structure, Neural-PI control,

that guarantees Exp-ISS of frequency control under time-
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varying inertia. This is, to our knowledge, the first learning-
based control algorithm that guarantees stability under
nonlinear and time-varying frequency dynamics.

• We introduce an online event-triggered switching control
framework for dynamical controller selection from a set
of pre-trained Neural-PI controllers, leading to improved
performance compared to a fixed Neural-PI controller,
while maintaining the stability guarantees.

• We conduct comprehensive experiments to validate the ef-
fectiveness and efficiency of our proposed online switching
algorithm with Neural-PI controllers. These experiments
verify the closed-loop stability and improved performance
for primary frequency control under variable inertia.

A. Related Work

1) Frequency control under time-invariant inertia: Most
existing frequency control methods are designed for systems
with constant inertia, including classical droop control [1],
[8]–[10], model predictive control (MPC) [11], [12] and data-
driven control [2], [7], [13]–[16]. The most popular method
for primary frequency control using synchronous generators
is droop control, which is typically a linear function of the
frequency deviation (possibly with deadbands and saturation)
[1], [8]. Droop control is also adopted in inverter-connected
resources to provide primary frequency control, to mimic
the behavior of synchronous generators [9], [10]. However,
linear controllers can be sub-optimal since the frequency
dynamics are nonlinear [12]. Facing this challenge, MPC-based
approaches [11], [12] synthesize nonlinear controllers through
optimization, which can lead to computational challenges
for real-time control. Considering the nonlinear nature of
frequency dynamics and the requirement for fast computa-
tion, recently, reinforcement learning (RL) approaches have
been proposed [13], [14]. See [2] for a recent review. The
basic idea of RL lies in finding a policy that computes the
optimal action based on observed states, aiming to maximize
cumulative rewards through the agent’s interaction with its
environment. The key challenge with those learning-based
methods is ensuring stability, which is critical for power system
applications. To this end, recent studies have integrated RL
with stability guarantees [7], [15], [16], for frequency control
under time-invariant inertia.

2) Frequency control under variable inertia: There is
growing interest in frequency control under variable inertia,
due to the increasing penetration of renewable generation.
[17] firstly proposed to use a switched-affine system model
with the linear approximated frequency dynamics for each
inertia model. Building on this model, [18] developed a
stable, time-invariant linear controller learned from datasets
of optimal time-varying LQR controllers. Additionally, [19]
validated the feasibility of solutions within the switched-
affine system framework, leveraging the specific structure of
linearized frequency dynamics. [20] proposes a robust controller
that optimizes the worst-case system performance via a H∞
loop shaping controller that adapts to time-varying inertia.
[21] considers the variable inertia by modeling the dynamics
as a linearized stochastic swing equation, where inertia is
modeled as multiplicative noise. Despite these advancements, a

common limitation persists: the models rely on a linear swing
equation for modeling the frequency dynamics and therefore
are unable to accurately capture the nonlinear behavior, which
might compromise control performance. There is also work
on system inertia estimation for frequency control under
variable inertia [22], employing real-time inertia estimation to
determine minimum PV power reserve requirements. However,
this approach does not provide stability guarantees for the
switching system, and as noted in a recent survey [23], fast
and robust inertia estimation is challenging.

Notation. We use bold symbols to represent vectors.
sp(A) := 1

2 (A+A⊤) denotes the symmetric part of a square
matrix A. diag(c) represents the diagonal matrix with diagonal
equal to the vector c. Vectors of all ones and zeros are denoted
by 1n,0n ∈ Rn, respectively. We use the superscript ∗ to
denote the equilibrium points of the variables.

II. MODEL AND PROBLEM FORMULATION

A. Power System Model

Consider a n-bus power network represented as a connected
graph (V, E), where buses are indexed by i, j ∈ V := [n] :=
{1, ..., n} and the connecting lines are denoted by unordered
pairs {i, j} ∈ E . State variables are phase angles θ := (θi, i ∈
[n]) ∈ Rn and frequency deviations from the nominal frequency
ω := (ωi, i ∈ [n]) ∈ Rn. Since the frequency dynamics only
depend on the phase angle differences, we define a change of
coordinates δi := θi − 1

n

∑n
j=1 θj , where δ := (δi, i ∈ [n]) ∈

Rn can be understood as phase angles in the center-of-inertia
coordinates. Denoting a bounded disturbance of power injection
from the nominal set-point pi as ∆di (e.g., renewable and load
fluctuations), the system dynamics can be written as:

δ̇i = ωi −
1

n

n∑
j=1

ωj , (1a)

Miω̇i = pi −Diωi + ui −
n∑

j=1

Bij sin(δi − δj) + ∆di, (1b)

where M := diag(Mi, i ∈ [n]) ∈ Rn×n are the generator
inertia, D := diag(Di, i ∈ [n]) ∈ Rn×n are the combined
frequency response coefficients from synchronous generators
and frequency sensitive loads, p := (pi, i ∈ [n]) ∈ Rn are the
net power injections, B := [Bij ] ∈ Rn×n is the susceptance
matrix with Bij = 0,∀{i, j} /∈ E , and u := (ui, i ∈ [n]) ∈ Rn

are the control actions, denoting the active power injection to
regulate the frequency. Note that the time index t for all the
state and action variables δi(t), ωi(t), ui(t), and the disturbance
∆di(t) in (1) are omitted for brevity.

Following the recent NREL report [3, Fig. 13], the amount
of inertia is piece-wise continuous because it only depends
on the on/off status of synchronous generators. Thus, the
frequency dynamics with time-varying inertia can be modeled
as a switching system, with a predetermined set of values
of equivalent inertia at each “mode”. The evolution of the
inertia in the system depends on the current mixture of
conventional generators and inverter-connected resources (when
a large renewable generation is available, some synchronous
generators will be offline). Considering m different inertia
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modes, the inertia follows a piece-wise continuous switching
signal q(t) : [0,∞) 7→ {1, ...,m} that remains unknown to
the controller. Thus the frequency dynamics in (1b) under
time-varying inertia can be written as,

Mi,q(t)ω̇i=pi−Diωi+ui−
n∑

j=1

Bij sin(δi − δj) + ∆di. (2)

This dynamics model in (2) makes the following assumptions
that are commonly adopted in the literature, cf. [24]:

• Lossless lines: the line resistance is zero for all {i, j} ∈ E ;
• Constant voltage profile: the bus voltage magnitudes for

all buses are constant and equal to 1 p.u. Reactive power
flows are not considered;

• Bounded angle difference: the equilibrium bus phase angle
difference is within ±π

2 for all {i, j} ∈ E .

Further, we assume that the bounded disturbances ∆d do
not depend on the history of states and actions. The assump-
tion is realistic considering disturbances arise from external,
unpredictable factors like weather or sudden load changes.

B. Control System Architecture

We present the control system architecture in Figure 2. To
guarantee convergence to the nominal frequency and improve
economic efficiency, we consider distributed communication
allowing for bidirectional information exchange between neigh-
boring buses, defined by the incidence matrix E. The control
action at bus i is defined as ui, which is the real power
injection at bus i calculated with real-time local frequency
measurements ωi and communication. We assume timescale
separation between the inverter dynamics and frequency control.

Fig. 2: Diagram of the control system architecture.

III. PROBLEM FORMULATION

This paper focuses on frequency control with variable inertia.
The switching dynamics for inertia are unknown to the control
algorithm. Our objective is to minimize the frequency deviation
of the system while maintaining moderate control costs.

The frequency control problem is defined as follows,

min
u

JT =
1

T

∫ T

0

( n∑
i=1

1

2
ciu

2
i +λ(∥ω∥2+∥ω∥∞)

)
dt, (3a)

s.t. δ̇i = ωi −
1

n

n∑
j=1

ωj , (3b)

Mi,q(t)ω̇i = pi −Diωi + ui−
n∑

j=1

Bij sin(δi − δj) + ∆di, (3c)

ui = π̂i(ωi, si, {sj , j ∈ Ni}) is stabilizing . (3d)

The objective function (3a) encodes the control costs
and a summation of 2-norm and ∞-norm of the frequency
deviations, for reducing both the operational cost and frequency
disturbance. Here, λ is a coefficient that trades off control cost
versus frequency deviation and ci > 0 is the controller cost
coefficient at bus i. The time-varying frequency dynamics are
given in (3b)-(3c). π̂i(ωi, si, {sj , j ∈ Ni}) is the controller
at bus i, which requires the local frequency measurement ωi

and variables {sj , j ∈ Ni} from node i’s neighbors Ni. The
variable si ∈ R includes the integral of frequency deviation
and the gradient of control cost, as defined in Section IV.

To formalize the stability constraint in (3d), we employ the
notion of input-to-state stability (ISS), which is commonly
used in nonlinear systems with disturbances [25]. Specifically,
we consider exponential-ISS (Exp-ISS) for fast frequency sta-
bilization. With x =

[
δ − δ∗ ω − ω∗ ks− ks∗

]⊤
, where

k is a control gain for the integral variable s to be defined
later, we present the definition of Exp-ISS as follows.

Definition 1 (Exponential Input-to-State Stability (Exp-ISS)).
A controller π is called Exp-ISS with parameters (κ, ρ, β) if,
for any initial condition x0 ∈ R3n and bounded disturbance
∆d(t), i.e., ∥∆d(t)∥L∞ = supt≥0∥∆d(t)∥2 is finite, the
states satisfy

∥x(t)∥2 ≤ κρt∥x0∥2 + β∥∆d(t)∥L∞ ,

for all t ≥ 0, where κ, β > 0, 0 < ρ < 1.

A controller satisfying the Exp-ISS condition ensures rapid
convergence to equilibrium with bounded error from any initial
state and disturbance. Moreover, provided that appropriate
conditions are met, the Exp-ISS guarantees for fixed subsystems
can be effectively extended to a switching system that alternates
between these subsystems [26].

IV. EXPONENTIALLY STABLE CONTROLLER DESIGN
UNDER ALL MODES

In this section, we design a controller structure that satisfies
the Exp-ISS property in Definition 1 under all modes and
provide a theoretical analysis. Our goal is to develop a uniform
stabilizing controller for all inertia modes in the switching
system that simultaneously achieves two key objectives. Firstly,
restore the system to its nominal frequency, where ω∗ = 0n.
Secondly, optimize the control cost for maintaining system op-
eration at the equilibrium, expressed as c(u) =

∑n
i=1

1
2ci(ui)

2.
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A. Controller Structure
We propose to use the following neural proportional-integral

(Neural-PI) controller structure,

π̂i(ωi, si, {sj , j ∈ Ni}) = −πi(ωi)︸ ︷︷ ︸
proportional term

+ ksi︸︷︷︸
integral term

, (4a)

ṡi = −c−1
i ωi −

∑
j∈Ni

(ciksi − cjksj). (4b)

We name it neural because the proportional term πi(·)
is a monotonically increasing function of the instantaneous
frequency deviation ωi parameterized as a monotone neural
network with πi(0) = 0. We name it integral because it is
a linear function of si, the integral of frequency deviations
and the difference in the gradients of the control cost c(ks)
between its neighbors. k > 0 is a learnable control gain defined
as a scalar. Figure 3 shows the proposed controller structure.

Fig. 3: Diagram of the Neural-PI controller defined by (4).

Define C as a diagonal matrix with diagonal entries equal
{ci}i∈V and ci > 0 is the controller cost coefficient, we
summarize the controller design (4) in vector form as

π̂(ω, s) = −π(ω)︸ ︷︷ ︸
proportional term

+ ks︸︷︷︸
integral term

, (5a)

ṡ = −C−1ω − EE⊤Cks. (5b)

Remark 1 (Comparison to the Neural-PI controller in [7]). The
above controller structure (5) is inspired by our earlier work [7]
for frequency control under time-invariant inertia with only
asymptotic stability guarantees, where both the proportional and
integral terms are parameterized as monotone neural networks.
In this work, we adapt this structure to frequency control
under time-varying inertia with one major difference: only
the proportional term is parameterized as a monotone neural
network, and the integral term is parameterized as a linear
function, in order to achieve exponential input-to-state stability
guarantees (Theorem 2). The theoretical contribution is that
we extend the asymptotic stability guarantees of the Neural-PI
controller to exponential ISS guarantee of each mode (Theorem
2), which is essential for establishing the stability of the
switching system under different inertia. •

B. Theoretical Results
Combining the frequency dynamics and the proposed Neural-

PI controller in (5), the overall closed-loop system can be
modeled in vector form as follows,

δ̇ = (In − 1

n
1n1

⊤
n )ω, (6a)

Mq(t)ω̇ = p+ π̂(ω, s)−Dω − EB sin(E⊤δ) +∆d. (6b)

Our first result characterizes the equilibrium points of the
closed-loop system (6) with ∆d = 0n.

Theorem 1 (Unique Closed-loop Equilibrium). Assume
∀{i, j} ∈ E |δi − δj | < π

2 , the power flow equation (3c)
is feasible, and proportional term equals to zero when the
frequency deviation is zero, i.e., π(0n) = 0n. Then the
equilibrium (δ∗,ω∗, ks∗) of the closed-loop system (6) with
∆d = 0n is the unique point satisfying

ω∗ = 0n, (7a)

EB sin(E⊤δ∗) = p+ ks∗, (7b)

ks∗ = γC−11n, (7c)

where γ is determined by

γ = −
∑n

i=1 pi∑n
i=1 c

−1
i

.(8)

Equation (7a) indicates that the proposed controller effec-
tively reduces frequency deviations to zero at the steady state.
Given that 1⊤

nE = 0, and upon premultiplying equation (7b), it
follows that

∑
i(pi+ks∗i ) = 0. By (7c), the final control action,

ks∗i , is distributed proportionally to γc−1
i . This allocation

strategy facilitates higher real power injection from lower-cost
buses, thereby restoring generation balance in an economically
efficient manner. Moreover, the equilibrium point remains the
same regardless of the inertia mode change and switching of
controllers.

For each fixed inertia mode, the following result provides
an exponential ISS guarantee for the closed-loop system.

Theorem 2 (Exp-ISS of Neural-PI Controller for Frequency
Control with Time-invariant Inertia). Let π(0n) = 0n and
πi(ωi) be monotonically increasing with respect to ωi. Consider
D := {x ∈ R3n,∀{i, j} ∈ E , |δi − δj | < π

2 }. If a Neural-PI
controller defined by (5) is deployed, then for any x0 ∈ D, the
closed-loop system (1) is exponentially input-to-state stable
(Exp-ISS), i.e., there exists positive scalars κ, β and 0 < ρ < 11

such that for all t ≥ 0,

∥x(t)∥2 ≤ κρt∥x0∥2 + β∥∆d(t)∥L∞ .

Theorem 2 guarantees Exp-ISS for the closed-loop (1)
with the Neural-PI controller under any timer-invariant inertia,
ensuring stability despite disturbances and supporting the
generalization of stability to the switching system (6). We
prove this using Lyapunov stability analysis by identifying a
well-defined Lyapunov function that exponentially converges
along the system’s trajectories (1) with bounded disturbance
errors. The detailed proof is available in Appendix B.

V. ONLINE SWITCHING ALGORITHM

In this section, we introduce an online event-triggered
switching algorithm with stability guarantees for frequency
control under time-varying inertia. The proposed algorithm
dynamically chooses from a set of pre-trained Neural-PI
controllers that are optimized for different uni-inertia modes, to
improve the controller performance while maintaining stability.
For implementation purposes, the algorithm is presented in a
discrete-time manner.

1An explicit expression of κ, ρ, β is provided in (24b) below.
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A. Online Event-triggered Switching Algorithm

Based on the previous discussion, the Neural-PI controller
is capable of maintaining frequency stability under any inertia
level. However, controllers optimized for high-inertia systems
may underperform when inertia is low due to faster frequency
dynamics [4]. Consequently, a uniform Neural-PI controller,
even trained for all modes, compromises between different
inertia modes and can result in suboptimal performance. Instead,
here we propose an innovative switching algorithm to select
the most appropriate controller based on the current system
state from a set of Neural-PI controllers, each trained for a
specific inertia level, while guaranteeing stability. The switching
algorithm can improve control performance compared to base
controllers trained for each specific mode. Figure 4 illustrates
the proposed online switching control idea.

Fig. 4: Online switching control for frequency control under
variable inertia.

We now detail the online event-triggered switching algorithm
in Algorithm 1. A finite pool of candidate controllers is
considered. With a slight abuse of notation, we define the
index set of base Neural-PI controllers as P = {1, · · · ,m},
where index i ∈ P refers to a Neural-PI controller trained in
inertia mode i. For theoretical purposes, the base controllers
share the same integral controller gain k. The proposed online
switching control algorithm contains three phases: the selection
phase (ns steps), the trial phase (nt steps), and the deployment
phase. The transition into the selection phase occurs once
a frequency deviation exceeding 0.01 Hz event is detected.
Note that a different event-triggering threshold of frequency
deviation can be chosen by the system operator according to
the operation requirements.

During the selection phase, we adopt a multi-arm bandit
(MAB) framework for deciding the best controller to use from
the set of pre-trained Neural-PI controllers. Each controller
represents an ‘arm’, the selection of a controller pulls an arm
and yields a cost. Specifically, at each time step and if the
selection phase flag is true, after observing the system state ω,
a controller is selected for deciding the action, and the cost
of the chosen action is revealed for updating the controller
selection probability (so that controllers with lower costs will

Algorithm 1 Online event-triggered switching algorithm.

Ensure: Choose selection phase duration ns, trial phase
duration nt, learning rate ξ > 0, batch length τ .

1: Initialize the controller selection probability Pi = 1/m and
accumulated cost G̃i(−1) = 0 for i ∈ [1, 2, ...,m] in the
controller pool; set selection flag as False and t = t0 = 0.

2: while time step t = 0, 1, 2, .... do
3: Measure frequency deviation ω(t);
4: if ∥ω(t)∥∞ > 0.01Hz and selection flag is False then
5: Set selection flag as True;
6: end if
7: if selection flag is True then
8: Let t0 = t;
9: for batch j = 0, 1, ..., ⌈ns

τ ⌉ (selection phase) do
10: Select controller Ij ∈ P from the selection

probability P;
11: Compute tj+1 = min(tj + τ, t0 + ns), imple-

ment the chosen Neural-PI controller Ij during batch time
[tj , tj+1] and calculate the batch cost,

g(Ij)(j)=
1

tj+1−tj

tj+1∑
t=tj

(
n∑

i=1

ci
2
ui(t)

2+λ(∥ω(t)∥2+∥ω(t)∥∞)

)
;(9)

12: Update the accumulated cost G̃i(j) = G̃i(j −
1) +

g(Ij)(j)

Pi
I(Ij = i) for all i ∈ P and I is the indicator

function;
13: Update the controller selection probabilities,

Pi =
exp(−ξG̃i(j))∑

k∈P exp(−ξG̃k(j))
,∀i ∈ P; (10)

14: end for
15: Let t = t0+ns, G̃i(−1) = G̃i(⌈ns

τ ⌉) for all i ∈ P ;
16: for time step t, t+ 1, ..., t+ nt (trial phase) do
17: Commit to controller I = argmax(P);
18: end for
19: Set the selection flag to False, t = t+ nt.
20: else Commit to controller I = argmax(P), set t = t+1.
21: end if
22: end while

have higher probabilities to be chosen). We adopt the batched
MAB in [27] for updating the controller selection probability,
since we would like to measure the controller performance over
a time interval rather than a single step. Thus the algorithm
proceeds in a batch manner with the batch length as τ . The
selected controller at batch j as Ij with the batched control
costs and frequency deviation defined in (9), as g(Ij)(j). The
controller selection probability P is updated at the end of each
batch using the historical accumulated cost G̃i(j) following
the exponential weight formula in (10). After the selection
phase, the most probable controller for the current mode, i.e.,
controller I = argmax(P ), is deployed for nt steps in the trial
phase. If the frequency deviation is still greater than the pre-set
threshold after the trial phase, we go back to the selection
phase; otherwise, we stay in the deployment phase and commit
to controller I until the next triggering event with a large
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enough frequency deviation.

B. Stability Guarantees for the Switching System

With the online event-triggered switching algorithm in
Algorithm 1, we now proceed to provide stability guarantees
for the switching system. Let Nq(T, t) be the number of mode
switches in the interval [t, T ). The switching signal q(t) has
an average dwell-time τa if there exists No, τa > 0 such that
Nq(T, t) ≤ No+

T−t
τa

,∀T ≥ t ≥ 0. The following result states
that, if inertia switches sufficiently slow (with a sufficiently
large τa), as compared to the time scale of the control, the
switching system with both inertia switching and controller
switching is still guaranteed to be Exp-ISS.

Theorem 3 (Exp-ISS for the switching system). Let π(0n) =
0n and πi(ωi) be monotonically increasing with respect to
ωi. Consider a finite number of inertia modes {1, · · · ,m},
with each candidate controller in the pool P being a Neural-
PI controller as defined by (5) deployed over D := {x ∈
R3n,∀{i, j} ∈ E , |δi−δj | < π

2 }. There exist constants τ∗a , κ
∗ >

0, ρ∗ ∈ (0, 1), and β∗ > 0 such that, if the average dwell
time τa > τ∗a , then with the online event-triggered switching
Algorithm 1, the switching system satisfies

∥x(t)∥ ≤ κ∗ρ∗t∥x0∥2 + β∗∥∆d(t)∥L∞ .(11)

We provide the proof sketch for Theorem 3. Consider first
the case of inertia changes only. In this case, Theorem 3 is
a direct consequence of [26, Theorem 3.1]. When switching
of controllers is considered, the Lyapunov function (16) is
invariant to controller changes. Thus the Lyapunov function for
the current controller is a common Lyapunov function for all
base Neural-PI controllers, and switching of controllers retains
Exp-ISS.

Note that the average dwell time τa is sufficiently large in
frequency control. A long average dwell time τa of inertia
implies slow inertia switching. In scenarios where synchronous
generators provide inertia, such switches occur on an hourly
basis, whereas control actions are executed in second and
sub-second scale [3]. Therefore, the average dwell time τa
is sufficiently large for the controllers, and Exp-ISS for the
system with switching inertia is preserved with rates κ∗, ρ∗ and
β∗. Theorem 3 also generalizes the stability guarantees of the
batched MAB algorithm [27] from an unknown time-invariant
system to unknown time-varying systems. When the switching
of inertia is sufficiently slow, the online event-triggered control
algorithm with the controller pool composed of Neural-PI
controllers preserves the exponential ISS guarantees of the
base Neural-PI controllers while enhancing the performance.

VI. EXPERIMENTS

This section first introduces the experiment setup and model
training details. Then, we evaluate the performance of the
base Neural-PI controllers and the proposed online switching
algorithm. Finally, we study the impact of hyperparameters in
the online switching algorithm through sensitivity analysis.

A. Experiment Setup

We evaluate the performance of different controllers using the
IEEE New England 10-machine 39-bus (NE39) network [28].
There are three inertia modes, where the inertia constants
M are set at 30%, 100%, and 500% of the standard values
[28]. These correspond to a low inertia scenario with prevalent
renewable generation (denoted as 0.3), a standard scenario
(denoted as 1.0), and a scenario dominated by synchronous
generators (denoted as 5.0), respectively. Three base Neural-
PI controllers are trained under specific inertia levels and
denoted as ‘Neural-PI-0.3’, ’Neural-PI-1’, and ’Neural-PI-5’.
The Neural-PI controller structure is defined in (5), where the
proportional term π(·) is parameterized as a monotone neural
network [15] with 1 hidden layer and 20 hidden units. To com-
ply with the operational constraints, we threshold our control
policy with action bounds, i.e. [π̂i(ωi, {sj , j ∈ Ni})]ūi

ui
, where

[·]ūi
ui

represents a projection onto [ui, ūi]. These constraints are
not considered in our theoretical analysis.

For each training trajectory, a random net-load disturbance is
generated at a random time step. The total trajectory length is
3s with step size ∆t = 0.01s (T = 300). To obtain the trained
controllers, we run 300 episodes, each episode containing
300 trajectories. Parameters of the controllers are updated via
gradient descent to minimize the following loss function,

Lπ̂ =
1

T

T∑
t=1

( n∑
i=1

1

2
ciu

2
i (t) + λ(∥ω(t)∥2 + ∥ω(t)∥∞)

)
.(12)

with initial learning rate 0.05, decaying every 50 episodes
with a base of 0.7. The system dynamics constraints (3b)-(3c)
are encoded as a physics-informed recurrent neural network
following the training algorithm in [7]. We use the TensorFlow
2.0 framework to build the learning environment and run the
training process with a single Nvidia 1080 Ti GPU with 11
GB memory. Our code is available here.2

With trained base controllers, we first test the base Neural-PI
controllers in different constant inertia modes to evaluate their
transient performances in different inertia levels (Table I), where
each test trajectory has a 3s duration and a random net-load
change at the start. We then demonstrate the efficiency of our
online switching algorithm with 20s trajectories, where mode
transitions occur every five seconds, which is a challenging
scenario for experimental purposes (Table II). Additionally,
random net-load disturbances are introduced at the 0.1-second
and 7.0-second. The initial inertia is set at 0.3, 1.0, and 5.0
with respective probabilities of 10%, 45%, and 45%. Inertia
transitions include increasing, decreasing, or staying the same,
governed by a Markov process. If the current inertia level is
0.3, the inertia level will stay at 0.3 or increase to 1.0 with
50% probability each. If the inertia level is at 1.0, there will
be a probability of 30%, 40%, and 30% to decrease, stay, and
increase the inertia level. If the current inertia is 5, it follows
50% probability to switch to 1.0 and 50% to stay the same.
These probabilities, predetermined for experimental purposes,
are unknown to the online control algorithm. We set τ = 5,
ξ = 5e−3, ns = 50, nt = 300 in Algorithm 1.

2https://github.com/JieFeng-cse/Online-Event-Triggered-Switching-for-
Frequency-Control

https://github.com/JieFeng-cse/Online-Event-Triggered-Switching-for-Frequency-Control
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B. Performance of the Online Switching Control

We consider the transient period as the 3 second time interval
after a disturbance and define the transient performance as the
cumulative cost during this period. Three metrics are used to
evaluate the controller performance:

• Frequency deviation: is defined as 1
T

∑T
t=1 λ(∥ω(t)∥2 +

∥ω(t)∥∞) denoting the average frequency deviation dur-
ing the transient period T = 300;

• Control cost: is defined as 1
T

∑T
t=1 c(u(t)) measuring the

average control cost during the transient period T = 300;
• Total cost: sum of frequency deviation and control cost.

We first present the performance of the base Neural-PI
controllers at different fixed inertia modes to illustrate the
sub-optimality when a controller is trained under one particular
inertia level and then used for a different inertia. Table I
summarizes the average total cost along 100 test trajectories.

TABLE I: Total control costs of different base Neural-PI con-
trollers under different inertia modes, with the best performance
in each mode highlighted in bold.

Inertia 0.3 Inertia 1.0 Inertia 5.0

Method Mean Std Mean Std Mean Std

Neural-PI-0.3 22.50 8.25 22.74 8.37 23.81 8.35
Neural-PI-1 335.07 2.84 11.23 2.40 11.24 2.34
Neural-PI-5 488.07 3.03 13.10 4.47 10.52 2.06

Table I shows that base controllers optimized for specific
inertia levels outperform others, indicating that proper switching
of controllers can improve performance. Notably, at a low
inertia level, controllers Neural-PI-1 and Neural-PI-5 result
in much higher costs because of large control actions and
induced frequency oscillations. As inertia increases, frequency
dynamics get slower and allow larger control actions to stabilize
the system. As a result, Neural-PI-1 and Neural-PI-5 outperform
Neural-PI-0.3 under higher inertia levels.

We now evaluate the performance of known switching, the
proposed online switching control in Algorithm 1, and base
Neural-PI controllers for frequency control under variable
inertia. Known switching refers to the ideal scenario where, as
soon as the inertia mode changes, the corresponding controller
is deployed instantly. However, real-time mode detection poses
significant challenges, as highlighted by [23], and is thus
considered an ideal performance benchmark. This experiment
uses a 20-second trajectory with mode transitions occurring
every five seconds. Results from 100 test trajectories are
summarized in Table II. Our online event-triggered switching
control achieves the significant improvement compared to the
Neural PI baselines without switching.

To illustrate how the proposed online switching algorithm
works, a test trajectory is provided in Figure 5, illustrating
controlled frequency deviation and the evolution of controller
selection probability distribution P across an inertia switching
sequence {5.0, 1.0, 1.0, 0.3}. Initially, a disturbance triggers the
selection phase at around 0.1 second. Neural-PI-5, outperforms
other controllers in the controller pool thus being selected
after the selection and trial phases, and is deployed until a new
disturbance at 7 seconds prompts another selection phase, where

TABLE II: Transient performance of the known switching,
online switching, and base Neural-PI controllers. Known
Switching defines the offline optimum assuming that the inertia
switches are known to the controller, and the corresponding
controller is selected once a mode change happens. Performance
of the proposed algorithm is highlighted in bold.

Total Cost Freq Deviation Control Cost

Method Mean Std Mean Std Mean Std

Known Switching 14.52 4.46 13.74 4.41 0.78 0.31
Online Switching 17.34 7.28 16.62 7.22 0.72 0.22
Neural-PI-0.3 21.91 7.11 21.58 6.97 0.32 0.16
Neural-PI-1 48.57 74.05 46.50 71.51 2.07 2.55
Neural-PI-5 56.18 101.91 54.13 99.36 2.04 2.57

Neural-PI-1 is chosen. With frequency disturbance restored, no
further switching is triggered even if mode changes happen.

Fig. 5: Control trajectory of all controlled buses with the
proposed online event-triggered switching control algorithm
and the evolution of controller selection probabilities.

Fig. 6: Comparison of the proposed online switching algorithm
and Neural-PI-0.3 at a selected bus. The second row gives a
zoomed-in view of the frequency dynamics after the second
and third disturbance.

In Figure 6, we further compare the controlled system
frequency under the proposed online switching control v.s. the
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TABLE III: Transient performance of the online switching
algorithm with different hyperparameters. Results of the
selected hyperparameters are highlighted in bold.

Total Cost Freq Deviation Control Cost

Parameter Mean Std Mean Std Mean Std

ξ = 5e−4, τ = 5 17.92 9.16 17.20 9.03 0.73 0.28
ξ = 5e−3, τ = 5 17.34 7.28 16.62 7.22 0.72 0.22
ξ = 3e−2, τ = 5 18.10 8.60 17.39 8.56 0.71 0.24
ξ = 5e−3, τ = 1 18.28 9.36 17.57 9.26 0.71 0.29
ξ = 5e−3, τ = 10 20.69 12.30 19.94 12.16 0.74 0.32

baseline Neural-PI-0.3 controller, which is the best-performing
base controller in Table II. The proposed online control
algorithm can effectively reduce the maximum frequency
deviations, as shown in the zoom-in views at the bottom.

C. Sensitivity Analysis

Last, we examine the impact of hyperparameters ξ (learning
rate) and τ (batch length) in the proposed online switching
algorithm in Algorithm 1. Results are presented in Table III.
The learning rate, ξ, modulates the algorithm’s responsiveness
to cost changes, set initially at 5e−4 based on the cost scale
in our experiments. A lower ξ results in a more gradual
evolution of the probability distribution P , avoiding rapid
probability change but potentially leading to prolonged use
of sub-optimal controllers. On the other hand, a higher ξ
accelerates convergence towards a particular controller, while
risking being greedy and committing to a sub-optimal choice
too early. The batch length τ also influences the balance
between exploration and exploitation. For our experiments,
with a selection phase of ns = 50, τ must be less than 10
to allow sufficient trials of different controllers. At τ = 10,
the agent has merely five opportunities to evaluate different
controllers, increasing the risk of prematurely converging to
a sub-optimal choice. A τ value of 1 leads to controller
update and switching at every step, potentially leading to more
oscillations and short-sighted controller performance evaluation.
Therefore, properly choosing hyperparameters is essential for
optimizing performance.

VII. CONCLUSIONS

In this work, we have considered the problem of primary
frequency control under time-varying system inertia. To address
it, we have modeled it as a switching system, where the
frequency dynamics under each mode are described by the
nonlinear swing equation, and different modes represent
different system inertia levels determined by the ratios of
inverter-connected resources and synchronous generators. We
proposed an online event-triggered switching control scheme,
to dynamically select a controller online from a set of pre-
trained Neural-PI controllers under specific inertia levels. Our
design leverages the Exp-ISS properties of the base Neural-PI
controller, to establish the Exp-ISS guarantee of the switching
system. The efficacy of the proposed approach is demonstrated
on the IEEE 39-bus system, where it achieves a notable
reduction in average cost by approximately 20.9% compared

to the best base Neural-PI controllers in the controller pool. In
terms of future directions, we are interested in incorporating
line losses and inverter dynamics into the stability analysis.
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APPENDICES

A. Proof of Theorem 1

Proof: At steady state, the dynamics (6) yields

ω∗ = 1nω
∗, (13a)

0n = p+ u(ω∗, s∗)−Dω∗ − EB sin(E⊤δ∗), (13b)

C−1ω∗ = −EE⊤Cks∗, (13c)

where ω∗ is a scalar. Premultiplying (13c) by 1⊤
n yields

1⊤
nC

−11nω
∗ = −1⊤

nEE⊤Cks∗ = 0,

which implies that ω∗ = 0. As a result, the right-hand side
of (13c) also equals the zero vector. Following [7, Lemma
5], EE⊤Cks = 0n if and only if Cks ∈ range(1n), which
indicates that Cks∗ = γ1n, implying that ks∗ = γc−11n.
In this case, u∗ = ks∗ is the unique minimizer of the
optimal steady-state economic dispatch problem following [29].
Applying these results to (13b) yields

EB sin(E⊤δ∗) = p+ ks∗ = p+ γC−11n.

By premultiplying the above equation with 1⊤
n and the fact

that 1⊤
nEB sin(E⊤δ∗) = 0, we can reach to (8). This result is

similar to the analysis in [29, Theorem 1]. Given that the inertia
does not show up in the equilibrium analysis, the switching
system has a unique equilibrium point.

B. Proof of Theorem 2

We use the Lyapunov stability theory. The proof is structured
as follows. We first present the Lyapunov function for the
closed-loop system, which can be bounded by the norm of
x on both sides. We then bound its Lie derivative under
disturbances. Following the application of the Comparison
Lemma [30, Adopted from Lemma 3.4], we arrive at Exp-ISS.

Lyapunov Function: Define the function R(s) as

R(s) :=

n∑
i=1

ci

∫ si

0

kzdz =

n∑
i=1

cik

2
s2i .(14)

Then, the Bregman distance is defined as BV(s, s∗), i.e.,

BV(s, s∗) := R(s)−R(s∗)−∇R(s∗)⊤(s− s∗)(15)

Notably, the Bregman distance here simplified as BV(s, s∗) =
k
2

∑
i ci(si − s∗i )

2. We consider the following Lyapunov
function candidate for a fixed inertia M :

V (δ,ω, s) =
1

2

n∑
i=1

Mi(ωi)
2 +Wp(δ) (16)

+ ϵ1Wc(δ,ω) +BV(s, s∗)− ϵ2(s− s∗)⊤1n1
⊤
nMω,

where

Wp(δ) : = −1

2

n∑
i=1

n∑
j=1

Bij(cos(δij)− cos(δ∗ij))

−
n∑

i=1

n∑
j=1

Bij sin(δ
∗
ij)(δi − δ∗i ),

Wc(δ,ω) :=

n∑
i=1

n∑
j=1

Bij(sin(δij)− sin(δ∗ij))ciMi(ωi − ω∗),

and δij := δi − δj . Here, ϵ1, ϵ2 > 0 are tunable parameters.
The last cross-term in (16) is inspired by [31].

Lemma 1 (Bounds on Lyapunov Function). For all (δ,ω, s) ∈
D, there exist a1, a2 > 03, such that the Lyapunov function
V (δ,ω, s) is bounded by the following inequalities

V (δ,ω, s) ≥ a1(∥δ − δ∗∥22 + ∥ω − ω∗∥22 + ∥ks− ks∗∥22),

V (δ,ω, s) ≤ a2(∥δ − δ∗∥22 + ∥ω − ω∗∥22 + ∥ks− ks∗∥22)).

Proof of Lemma 1: The proof is similar to the proof
of [31, Lemma 1]. We will bound V (δ,ω, s) term-by-term.
First, following the Rayleigh-Ritz theorem, the kinetic energy
term 1

2

∑n
i=1 Mi(ωi − ω∗)2 is bounded with lower bound

1
2λmin(M)∥ω − ω∗∥22 and upper bound 1

2λmax(M)∥ω −
ω∗∥22. Following [31, Lemma 4], Wp(δ) can be bounded
by η1

2 ∥δ − δ∗∥22 ≤ Wp(δ) ≤ η2

2 ∥δ − δ∗∥22 with some positive
η1, η2. Define Cmax = max(C), the absolute value of the
cross-term Wc(δ) is bounded as follows,

|Wc(δ)| ≤
1

2
(η22C

2
max∥δ − δ∗∥22 + λmax(M)2∥ω − ω∗∥22).

Let W2 = (s− s∗)⊤1n1
⊤
nMω, similarly, we have

|W2| ≤
1

2
(
n2

k2
∥ks− ks∗∥22+λmax(M)2∥ω∥22).

3Explicit expressions for a1, a2 > 0 are given in (18).
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Because BV(s, s∗) = 1
2k

∑
i ci(ksi−ks∗i )

2, it can be bounded
by Cmin

2k ∥ks− ks∗∥22 ≤ BV(s, s∗) ≤ Cmax

2k ∥ks− ks∗∥22, with
Cmin = min(C). Combining the inequalities, we can bound
the entire Lyapunov function with

a1 :=
1

2
min(λmin(M)− (ϵ1 + ϵ2)λmax(M)2,

η1 − ϵ1η
2
2C

2
max,

kCmin − ϵ2n
2

k2
), (18a)

a2 :=
1

2
max(λmax(M) + (ϵ1 + ϵ2)λmax(M)2,

η2 + ϵ1η
2
2C

2
max,

kCmax + ϵ2n
2

k2
). (18b)

ϵ1 and ϵ2 are sufficiently small so that a1, a2 are positive.
The next result bounds the Lie derivative of (16).

Lemma 2 (Time derivative). Given the Neural-PI controller
defined by (5), with π(0n) = 0n and πi(ωi) monotonically
increasing with respect to ωi, consider the Lyapunov function
(16). There exist α1, α2 > 04 such that, for (δ,ω, s) ∈ D,

V̇ (δ,ω, s) ≤ −α1V (δ,ω, s) + α2∥∆d∥2
√
V (δ,ω, s).

Proof of Lemma 2: Define pe,i(δ) :=
∑n

j=1 Bij sin(δij),
H(δ) = ∇pe(δ). It can also be written as H(δ) =
EBdiag(cos(E⊤δ))E⊤, where E is the incidence matrix.
Given that B is a diagonal matrix, H(δ) is a Laplacian matrix.
We start by computing the partial derivatives of V (δ, ω) with
respect to each state:
∂V

∂δ
=pe(δ)− pe(δ

∗) + ϵ1H(δ)CM(ω − ω∗),

∂V

∂ω
=M [ω − ω∗ + ϵ1C(pe(δ)− pe(δ

∗))]− ϵ2M1n1
⊤
n (s− s∗),

∂V

∂s
=C(ks− ks∗)− ϵ21n1

⊤
nMω.

Therefore, the partial Lie derivatives can be written as

∂V

∂δ
δ̇ =(pe(δ)− pe(δ

∗))⊤(ω − 1n
1⊤
nω

n
)

+ ϵ1(H(δ)CM(ω − ω∗))⊤(ω − 1n
1⊤
nω

n
).

∂V

∂ω
ω̇ = [ω−ω∗+ϵ1C(pe(δ)−pe(δ

∗))−ϵ21n1
⊤
n (s−s∗)]⊤Mω̇.

∂V

∂s
ṡ = −(ks− ks∗)⊤[(ω − ω∗) + CEE⊤Cks]

+ ϵ2ω
⊤M1n1

⊤
n [C

−1(ω − ω∗) + EE⊤Cks].

Following Theorem 1, Cks∗ ∈ range(1n) and thus
CEE⊤Cks∗ = 0. A direct result of this Theorem is

(ks− ks∗)⊤CEE⊤Cks = (ks− ks∗)⊤CEE⊤C(ks− ks∗)

Note that by definition pe(δ)
⊤1n = 0, H(δ)⊤1n = 0,

(pm −Dω∗ − π(ω∗)− pe(δ
∗) + ks∗ = 0 at the equilibrium.

In order to simplify the summation, we introduce the following
three zero-terms

Z1 = (pe(δ)− pe(δ
∗) + ϵ1H(δ)CM(ω − ω∗))⊤(1

1⊤ω

n
− 1ω∗)︸ ︷︷ ︸

=0

Z2 = −(ω − ω)⊤ (p−Dω∗ − π(ω∗)− pe(δ
∗) + ks∗)︸ ︷︷ ︸

=0

Z3 = −[ϵ1C(pe(δ)− pe(δ
∗))]⊤ (p−Dω∗ − π(ω∗)− pe(δ

∗) + ks∗)︸ ︷︷ ︸
=0

4Explicit expressions for α1, α2 > 0 are provided in (23).

Consider sp[Q(δ,ω)] as followsϵ1C ϵ1C(D +K(ω)) −ϵ1C
0 D − ϵ1MCH(δ)− ϵ2M1n1

⊤
nC

−1 − ϵ2
k
(D +K(ω))1n1

⊤
n

0 0 CEE⊤C + ϵ2
k
1n1

⊤
n

 ,

Thus, we have

V̇ (δ,ω, s) =
∂V

∂δ
δ̇ +

∂V

∂ω
ω̇ +

∂V

∂s
ṡ

=
∂V

∂δ
δ̇ +

∂V

∂ω
ω̇ +

∂V

∂s
ṡ+ Z1 + Z2 + Z3

≤ −

[
pe(δ)− pe(δ

∗)
ω − ω∗

ks− ks∗

]⊤

Q(δ,ω)

[
pe(δ)− pe(δ

∗)
ω − ω∗

ks− ks∗

]
− (ω − ω∗)⊤(π(ω)− π(ω∗))

+ [ω − ω∗ + ϵ1C(pe(δ)− pe(δ
∗))− ϵ2

k
1n1

⊤
n (ks− ks∗)]⊤∆d

Consider a small enough ϵ1 and ϵ2, matrix Q(δ,ω) can
be positive definite [31]. Given that π(ω) is monotonically
increasing, −(ω−ω∗)⊤(π(ω)− π(ω∗)) is negative. Thus the
above equation can be written as

V̇ (δ,ω, s) ≤−

[
pe(δ)− pe(δ

∗)
ω − ω∗

ks− ks∗

]⊤

Q(δ,ω)

[
pe(δ)− pe(δ

∗)
ω − ω∗

ks− ks∗

]

+

C(pe(δ)− pe(δ
∗))

ω − ω∗

−1n1
⊤
n (s− s∗)

⊤ [
ϵ∆d
∆d
ϵ2∆d

]

This further leads to

V̇ ≤ −a3
a2

V (δ,ω, s) +
a4
√
1 + ϵ2 + ( ϵ2k )

2

√
a1

∥∆d∥2
√

V (δ,ω, s)

where a3 = minδ,ω λmin(Q(δ,ω))min(1, η21) > 0, a4 =√
max(1, η22C

2
max, n

2) > 0. Thus we define α1, α2 as follows,

α1 =
a3
a2

, α2 =
a4
√

1 + ϵ2 + ( ϵ2k )
2

√
a1

.(23)

Given that
√̇
V = V̇

2
√
V

, using Lemma 2, we get

˙√
V (δ,ω, s) ≤ −α1

2

√
V (δ,ω, s) +

α2

2
∥∆d∥2.

Using the Comparison Lemma [30, Lemma 3.4], we have√
V (δ,ω, s) ≤

√
V (δ,ω, s)|t=0 exp

−α1
2 t +

α2

α1
∥∆d∥2,

where the second exponential term is dropped by relaxation.
Utilizing Lemma 1, the above can be rewritten as

∥x(t)∥2 ≤ κρt∥x0∥2 + β∥∆d(t)∥L∞ , (24a)

where κ =

√
a2√
a1

, ρ = exp−
α1
2 , β =

α2

α1
√
a1

. (24b)

Notably, while Exp-ISS is guaranteed regardless of inertia
modes, the parameters κ, ρ, and β are dependent on the
inertia matrix, indicating that variations in inertia can affect
the convergence rate.


