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Abstract— While control barrier functions are employed
in addressing safety, control synthesis methods based on
them generally rely on accurate system dynamics. This is a
critical limitation, since the dynamics of complex systems
are often not fully known. Supervised machine learning
techniques hold great promise for alleviating this weakness
by inferring models from data. We propose a novel control
barrier function-based framework for safe control through
event-triggered learning, which switches between priori-
tizing control performance and improving model accuracy
based on the uncertainty of the learned model. By updating
a Gaussian process model with training points gathered
online, the approach guarantees the feasibility of control
barrier function conditions with high probability, such that
safety can be ensured in a data-efficient manner. Further-
more, we establish the absence of Zeno behavior in the
triggering scheme, and extend the algorithm to sampled-
data realizations by accounting for inter-sampling effects.
The effectiveness of the proposed approach and theory is
demonstrated in simulations.

Index Terms— Event-triggered learning, safety-critical
control, Gaussian processes, control barrier functions.

I. INTRODUCTION

C ontrol barrier functions (CBFs) are commonly used to
guarantee the safety of nonlinear systems. Given a valid

CBF for a control-affine nonlinear system, safe control inputs
can be efficiently synthesized online using a quadratic program
(QP). However, this QP formulation generally assumes perfect
knowledge of system dynamics, which can be challenging to
derive analytically for many applications. For example, real-
world systems such as autonomous vehicles, industrial ma-
chinery, and medical robots have inherent complexity, which
often prevents accurate system identification using classical
techniques. Recently, Gaussian processes (GPs) have gained
attention for system identification in control due to their strong
theoretical foundations [1]. GPs generalize well due to their
ability to make accurate predictions even with a small amount
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Fig. 1. Overview of the proposed approach for safe learning-based
control synthesis through event-triggered learning with Gaussian pro-
cesses and control barrier functions. A nominal controller (grey) passes
through a safety filter (red) constructed using a CBF and GP model
(green), which minimally modifies the control to ensure safety. When the
model uncertainty becomes too high, an update event is triggered, which
activates the excitation filter (blue) to generate sufficiently informative
data used to update the GP model. Otherwise, the nominal control law
is only adapted by a safety filter, which relies on the GP model.

of data. Moreover, they are particularly well suited for safety-
critical problems since they provide a measure of model
uncertainty along with their predictions, which allows the
derivation of prediction error bounds [2], [3]. Therefore, CBFs
in combination with GPs hold a great promise for the safe
control of uncertain systems [4]–[6]. This paper introduces a
novel CBF-based framework for ensuring sampled-data safety
and recursive feasibility guarantees through event-triggered
learning with GPs for systems under uncertain, nonlinear input
perturbations. As outlined in Fig. 1, our approach modifies a
nominal control law via a CBF-based safety filter, which is
defined using a GP model of the unknown dynamics. This
safety filter step can be formulated as a second-order cone
program (SOCP), which is known to lack feasibility guarantees
in general, see e.g. [7], [8]. Therefore, we derive a novel,
straightforwardly interpretable condition for the existence of
admissible control inputs. By requiring a sufficiently large
ratio between the GP’s mean and standard deviation, our fea-
sibility condition ensures that learning errors do not dominate
the nominal model, thereby effectively ensuring a form of
’robust controllability’. Using this condition, we show that the
CBF-based safety filter can be implemented as a QP despite
the lack of an exact model.

Since it can be hard to guarantee the satisfaction of the
feasibility condition using offline data, we design an event
trigger which updates the GP model using data generated
online. To ensure a sufficient increase in model accuracy, we



2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

derive a finite, closed-form, lower bound for the necessary
control inputs in the generated training data set. We exploit this
knowledge in an excitation filter, which suitably scales control
inputs in a safe direction when a model update is triggered.
Thereby, our event-triggered learning approach ensures the
recursive feasibility of the CBF constraints and consequently
the safety of the control system.

In order to further facilitate the real-world implementability
of the proposed control scheme, we extend it to a sampled-data
realization by tightening the CBF constraints in dependence on
the sampling time. We show that the inter-event time is lower
bounded by a positive value, such that the occurrence of Zeno
behavior [9], [10], i.e., an infinite number of trigger events in
a finite time interval, is excluded. This lower bound allows
us to account for inter-sampling effects in the event trigger
via an early triggering strategy. Thereby, safety and feasibility
guarantees from the continuous-time analysis are maintained
despite a sampled-data realization of the control law.

The remainder of this article is structured as follows:
Section II defines the problem formulation. In Section III,
we present a novel event-triggered learning approach with a
switching control law that guarantees safety and feasibility.
The extension of this approach to sampled-data systems is
proposed in Section IV. Finally, in Section V, we illustrate the
proposed methods in numerical simulations to demonstrate its
effectiveness in an adaptive cruise control example, before we
conclude the paper in Section VI.

Related Work: When the effect of the control input on the
dynamics is known, GP accuracy guarantees can be directly
employed for adapting the robustness of CBF conditions to the
model error [4]. By reflecting control-affine model structures
in the kernel used in GPs, this adaptation strategy can be
straightforwardly extended to obtain safe control inputs despite
model uncertainty [5], [6]. Since the resulting optimization
problems for determining control inputs become SOCPs rather
than QPs, safety can be efficiently ensured in principle.

However, these guarantees are limited to an idealized setting
which ignores challenges we are confronted with in the
execution of the control law: 1) computation times requiring a
discrete-time realization of controllers, and 2) the feasibility of
the CBF constraints, potentially in combination with control
input constraints. The discrepancy between continuous-time
derivation of safety guarantees and a practical implementation
in discrete time can be straightforwardly dealt with in the
absence of a GP model. For example, the inter-sampling
effects arising from discretizations such as zero-order hold
(ZOH) can be considered in the CBF conditions through a
safety margin [11]. By basing these safety margins on a local
Lipschitz analysis, the conservativeness of tightening the CBF
constraints in sampled-data realizations is reduced [12]. Even
though it is possible to extend these ideas to approaches
ensuring safety using CBFs and offline trained GP models
[13], the feasibility of the resulting optimization problem is
not guaranteed.

This loss of feasibility guarantees comes from the SOCP
structure that is required due to model uncertainties; feasibility
guarantees are not directly inherited from the original QP
formulation and strongly depend on the uncertainty of the

employed GP model [7], [8]. Due to the inherent relationship
between model uncertainty and the available training data,
the feasibility of the CBF constraint is crucially influenced
by the data generation approach. This insight motivates the
application of online learning strategies to ensure feasibility.
In particular, event-triggered learning [14] is a promising
paradigm wherein data is collected and the model is updated
only when certain conditions are satisfied, e.g., model uncer-
tainty exceeds a prescribed threshold. Event-triggered learning
applied to GP model inference is exploited for Lyapunov-based
stabilization [15], [16], for which exceptional data efficiency is
demonstrated. Due to the close relationship between Lyapunov
functions and barrier functions [17], it is possible to extend
these concepts to CBFs. While first results [18], [19] have
shown the efficacy of this approach in ensuring feasibility
when directly learning the CBF constraint, they exhibit crucial
weaknesses. Their feasibility guarantees potentially require
the application of arbitrarily large control inputs when GP
updates are triggered, rendering the theoretical analysis void
when considering input constraints. Moreover, Zeno behavior
cannot be excluded, such that a transfer of guarantees for the
theoretically analyzed continuous-time control law to discrete-
time implementations is not straightforward. Even though
some issues such as the potentially unbounded control inputs
are mitigated through extended data generation phases [20],
this strategy exhibits other weaknesses, e.g., arbitrarily poor
control performance when gathering data. Therefore, providing
sampled-data feasibility and safety guarantees for GP-based
CBF approaches remains an open problem.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notation
Vectors and matrices are denoted by bold lower and upper-

case symbols, respectively. We denote by R>0 and R≥0 the
sets of real positive numbers without and with zero, respec-
tively, and by N the set of natural numbers. The Euclidean
norm is denoted by ∥·∥. A function f : Rn → R is locally
Lipschitz if, for every compact set S ⊂ Rn, there exists L > 0
such that ∥f(x) − f(y)∥ ≤ L∥x − y∥, for all x, y ∈ S. ∇xf
denotes the gradient of a function f with respect to x. A
continuous function α : R>0 → R>0 is of extended class K
function if it is strictly increasing, α(0) = 0, limr→∞ α(r) =
∞ and limr→−∞ α(r) = −∞. The Gaussian distribution
with mean µ ∈ R and variance σ2 ∈ R>0 is denoted by
N

(
µ, σ2

)
. The function diag([x1, x2, . . . xn]) constructs a

diagonal matrix where the elements (x1, x2, . . . xn) are scalar
values representing the diagonal entries, with all off-diagonal
elements being zero. IN denotes the N ×N identity matrix.
x′ ∈ Rn denotes the test point. The absolute value of a
scalar value x is denoted by |x|. The sign function, denoted
as sign(·), is defined to return −1 for negative values, 0 for
zero, and 1 for positive values.

B. Problem Setting
We consider single-input linear dynamical systems with

nonlinear input perturbation of the form

ẋ = Ax+ b(f(x) + g(x)u) (1)
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with state x ∈ X ⊆ Rn and input u ∈ U ⊆ R, where U
and X are compact sets. Throughout the paper, the argument
t in x(t) and u(t) is omitted for brevity whenever possible.
While the matrix A ∈ Rn×n, vector b ∈ Rn, and the control-
affine structure of the dynamics are assumed to be known, the
functions f : X → R and g : X → R are considered unknown.
This structure covers a wide range of system classes that can
be represented by input-affine nonlinear systems in canonical
form, such as Euler-Lagrange models, where A reflects an
integrator structure.

Remark 1: The restriction to systems with scalar inputs is
only used for notational convenience in subsequent sections,
but all results straightforwardly extend to multi-input systems
with block-diagonal matrix B and diagonal matrix G(x).

To ensure that (1) is a well-behaved dynamical system, we
pose additional requirements on the unknown functions f(·)
and g(·), which are formalized in the following assumption.

Assumption 1: The unknown functions f(·) and g(·) are
locally Lipschitz continuous on the compact domain X , with
Lipschitz constants Lf and Lg , respectively.
Assumption 1 ensures existence of a unique solution to the
system (1) and can commonly be found in the literature of non-
linear control [21]. Moreover, this assumption is commonly
satisfied for a wide range of systems. Thus, Assumption 1 is
generally not restrictive.

Remark 2: Assumption 1 directly implies that there exist
lower bounds f , g and upper bounds f̄ , ḡ for f(x), g(x) on
the compact domain X , i.e.,

f ≤ f(x) ≤ f̄ , (2a)

g ≤ g(x) ≤ ḡ, (2b)

for all x ∈ X .
Based on this system description, we consider the problem

of designing a control law π : X → R which ensures the
safety of the system (1). The primary goal of safety is to
constrain all system trajectories to a predefined safe set C,
which we assume to exhibit no isolated points. We define this
set as the zero-super level set C = {x ∈ X : ψ(x) ≥ 0} of a
continuously differentiable function ψ : X → R. Therefore,
safety essentially reduces to forward invariance of C, as
formalized in the following definition.

Definition 1 (Safety): A system (1) is safe with respect to
the set C if this set is forward control invariant, i.e., for some
u ∈ U starting at any initial condition x0 ∈ C, it holds that
x(t) ∈ C for x(0) = x0 and all t ≥ 0.
A common method to show this form of safety relies on the
concept of barrier function (CBF), a powerful tool to certify
the safety of a wide range of control laws.

Lemma 1 (Control Barrier Functions [17]): Consider a
dynamical system (1) and a set C defined by a continuously
differentiable function ψ : X → R. If there exists an extended
class K∞ function α : R→ R such that

max
u∈U

c(x) + d(x)u ≥ 0, (3)

with

c(x) = ∇Txψ(x)(Ax+ bf(x)) + α(ψ(x)), (4a)

d(x) = ∇Txψ(x)bg(x), (4b)

holds for all x ∈ C, ψ(·) is called control barrier function
(CBF) and every Lipschitz control law π(·) such that π(x) ∈
{u ∈ U : c(x) + d(x)u ≥ 0} renders the system (1) safe with
respect to C.
The crucial component necessary for the application of this
result is access to a valid CBF. Our work does not focus on
the construction of CBFs, but rather on exploiting them to
ensure safety with event-triggered learning. Hence, we make
the following assumption.

Assumption 2: A twice differentiable CBF ψ(·) and a Lip-
schitz continuous extended class K∞ function α(·) satisfying
the conditions of Lemma 1 are known for system (1) with
f(x) = 0 and g(x) = 1. This CBF induces a compact control
invariant set C = {x ∈ X : ψ(x) ≥ 0}.
While the construction of CBFs for nonlinear systems can be
challenging, Assumption 2 only requires us to find a suitable
CBF for a linear dynamical system, which significantly simpli-
fies the problem. For example, when A reflects an integrator
structure, suitable CBFs can be iteratively constructed using
the approaches proposed in [22], [23]. Therefore, Assump-
tion 2 is generally not restrictive. Note that this assumption
does not require knowledge of the unknown functions f(·) and
g(·). Instead, other works [13], [18], [24] require knowledge
of a CBF for the unknown system, which belongs to a more
general class than the ones considered here.

To ensure that the CBF considered in Assumption 2 for
f(x) = 0, g(x) = 1 also satisfies the conditions of Lemma 1
for arbitrary, unknown functions f(·), g(·), we make the
following assumption.

Assumption 3: The unknown function g(·) is lower
bounded by a positive scalar g ∈ R>0, i.e., g(x) ≥ g for
all x ∈ X .
This assumption does generally not impose strong require-
ments on g(·). The lower bound g is positive for many classes
of dynamical systems such as mechanical systems, where g(·)
is related to the inertia. If we knew f(·) and g(·), these
assumptions would allow us to immediately define a safety
filter

u∗(x) = argmin
u∈R
∥πnom (x)− u∥2 (5a)

s.t. c(x) + d(x)u ≥ 0 (5b)

which minimally modifies a given nominal control law πnom :
X → R, such that (3) can be straightforwardly ensured.
Under sufficient smoothness of α(·), ψ(·) and πnom(·), the
resulting control law can even be shown to be locally Lipschitz
continuous [17], such that Lemma 1 ensures the safety of
the closed-loop system. However, this approach is not directly
applicable in a setting where f(·) and g(·) are unknown.

In order to overcome this limitation, we assume the ability to
collect data online such that we can learn models f̂ : X → R
and ĝ : X → R using GP regression. For this data, we require
the following properties.

Assumption 4: At arbitrary sampling times t ∈ R≥0, train-
ing data ([xT (t), u(t)]T , y(t)) with outputs y(t) = f(x(t)) +
g(x(t))u(t) + ωt perturbed by i.i.d. Gaussian noise ωt ∼
N (0, σ2

on), σ
2
on ∈ R>0, can be collected.
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To be able to realize event-triggered learning strategies, it
is common to allow sampling at arbitrary sampling times
as previously already assumed, e.g., in [15]. Assumption 4
requires noise-free state measurements, while training targets
y can be perturbed by Gaussian noise, which is a frequently
used assumption in the GP-based control literature [25], [26].
In fact, noise-free measurements are often a prerequisite for
analyzing continuous-time controllers [21]. Hence, we restrict
our attention to noise-free states to streamline the presentation,
even though the extension to noisy state measurements is
possible under certain assumptions [27].

While Assumption 4 allows the generation of data by
applying a control input for an infinitesimal amount of time,
this is not possible with controller implementations running on
computers with fixed sampling rate. Therefore, we additionally
need to consider the effects of applying control inputs only at
discrete times tk, i.e.,

u (t) = π(x(tk)), ∀t ∈ [tk, tk+1) (6)

with tk = kT for all k ∈ N, such that it becomes necessary
to analyze a sampled-data system.

Based on this system description and Assumptions 1-4,
we consider the problem of designing a sampling strategy
to determine when measurements need to be taken and a
sampled-data control law π(·), such that safety as defined in
Definition 1 is guaranteed. Since this is a challenging problem,
we first address this problem for continuous-time systems in
Section III. In Section IV, we extend the results to consider
the effects of the restriction to control laws of the form (6) to
enable safe online learning in sampled-data systems.

III. SAFE CONTROL THROUGH EVENT-TRIGGERED
LEARNING

In this section, we address the problem of designing an
event-triggered learning scheme together with a switching con-
trol law to provide safety. We first introduce the fundamentals
of Gaussian process regression in Section III-A. In Section III-
B, we demonstrate how control-affine system models can be
inferred from data along with prediction error bounds based
on GPs. Based on these GP models, we provide a QP-based
approach for synthesizing safe control laws in Section III-C.
We use this control law as a basis for the design of a switching
controller and an event-triggered learning approach, which we
prove to guarantee safety under weak assumptions in Sec-
tion III-D. The guarantees for the exclusion of Zeno behavior
with the proposed event trigger are given in Section III-E.

A. Gaussian Process Regression
Gaussian process regression (GPR) is a statistical method

based on the concept that any finite number of measurements
{h(q(1)), . . . , h(q(N))}, N ∈ N, of an unknown function
h : Q → R evaluated at q ∈ Q from some index set Q,
e.g., Q = Rn, follows a joint Gaussian distribution. A GP,
denoted h(·) ∼ GP(ĥ(·), kh(·, ·)), is fully specified using a
prior mean ĥ : Q → R and a positive definite kernel function
kh : Q × Q → R>0 [1]. The mean function incorporates
prior model knowledge, which we set to ĥ(·) = 0 if no prior

knowledge about the function is available. This is also assumed
in the following without loss of generality. The kernel function
kh(·, ·) encodes abstract information about the structure of
h(·), such as smoothness or periodicity. In the subsequent
sections, we assume that the kernel satisfies the following
properties.

Assumption 5: The kernel kh(·, ·) is stationary, i.e., it is
a function of the difference of its arguments, and satisfies
kh(q, q) = s2h for all q ∈ Q, where s2h ∈ R≥0 denotes the
signal variance.
The stationarity holds for many commonly used kernels, such
as the square exponential kernel and Matérn class kernels,
which have the capability of approximating continuous func-
tions arbitrarily well [1], [28]. Therefore, this assumption does
not impose significant restrictions.

Given training data D = {q(i), y(i)}Ni=1 consisting of N
training inputs q(i) ∈ Q and noisy measurements y(i) =
h(q(i)) + ω(i), ω(i) ∼ N (0, σ2

on), σ
2
on ∈ R>0, we can

compute the posterior GP by conditioning the prior on D. The
resulting posterior distribution is again Gaussian with mean
and variance defined by

µ(q) = kTh (q)
(
Kh + σ2

onIN
)−1

y, (7a)

σ2(q) = kh(q, q)− kTh (q)
(
Kh + σ2

onIN
)−1

kh(q), (7b)

where kh(q) and Kh are defined element-wise via kh,i(q) =
kh(q, q

(i)) and Kh,ij = k(q(i), q(j)), respectively, and y =
[y(1) · · · y(N)]T .

B. Learning Models of Control-Affine Systems

Since in the system (1), the known dynamics is disturbed
by the control-affine nonlinearity f(x) + g(x)u, our learned
system model should exploit this knowledge and provide a
model of the same structure. Including this knowledge of
the internal structure of the unknown nonlinearity can be
straightforwardly achieved with GPs by employing composite
kernels for regression [29]. For this purpose, we define a GP
prior for f(·) and g(·) in (1) such that

f(·) ∼ GP (0, kf (·, ·)) , (8a)
g(·) ∼ GP (0, kg (·, ·)) (8b)

with s2f = kf (x,x), s2g = kg(x,x), where sf and sg denote
the signal variances of f(·) and g(·), respectively. This
implies that the composite prior h(·) ∼ GP(0, kh(·, ·)) for
h(q) = f(x) + g(x)u with q = [xT , u]T is defined via the
composite kernel [29],

kh(q, q) = kf (x,x
′) + ukg(x,x

′)u′. (9)

Using these priors, it is straightforward to derive the posterior
distributions of the functions f(·) and g(·) analogously to
standard GPR by conditioning the joint prior of the individual
functions on the training data [30]. The resulting posterior
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distributions are again Gaussian with means and variances

µf (x) = kTf (x)
(
Kh + σ2

onIN
)−1

y, (10a)

µg(x) = kTg (x)U
(
Kh + σ2

onIN
)−1

y, (10b)

σ2
f (x) = kf (x,x)−kTf(x)

(
Kh+σ

2
onIN

)−1
kf (x), (10c)

σ2
g(x) = kg(x,x)−kTg(x)U

(
Kh+σ

2
onIN

)−1
Ukg(x), (10d)

where U = diag([u(1) . . . u(N)]) and kf (x), kf (x) are
defined analogously to kh(x). In order to exploit the
Bayesian foundations of GP regression for the derivation of
prediction error bounds, we make the following assumption.

Assumption 6: The unknown functions f(·) and g(·) are
samples from prior GPs (8a) and (8b) defined using kernels
kf (·, ·) and kg(·, ·), such that (10a)-(10d) are Lipschitz con-
tinuous with Lipschitz constants Lµf

, Lµg
, Lσf

, Lσg
.

This assumption of suitable prior distributions is commonly
employed when working with Bayesian models, see e.g.,
[3], [13]. While it effectively limits the admissible class of
unknown functions to the sample space of the GP prior, this
restriction is often not severe, in particular when working
with universal kernels [28]. Moreover, the requirement of
Lipschitz continuous mean and standard deviation functions
is generally not restrictive. For stationary kernels, it can be
straightforwardly achieved using a sufficient differentiability
of the kernel [31]. Therefore, Assumption 6 does not pose a
significant limitation. Based on this assumption, we introduce
next prediction error bounds for µf (·) and µg(·).

Lemma 2: Consider unknown functions f(·) and g(·) sat-
isfying Assumptions 1 and 6. Moreover, assume that N ∈ N
observations of x(i), y(i) are available. Then, for every δ ∈
(0, 1) and any constants σf , σg ∈ R>0, the prediction error of
GP regression is jointly bounded by

|µf (x)− f(x)| ≤
√
βf max{σf (x), σf}, (11a)

|µg(x)− g(x)| ≤
√
βgmax{σg(x), σg}, (11b)

for all x ∈ X with probability of at least 1− δ, where

βf = 8 log
(2
δ

n∏
j=1

(√n
2τf

(
max
x∈X

xj−min
x∈X

xj
)
+ 1

))
, (12a)

βg = 8 log
(2
δ

n∏
j=1

(√n
2τg

(
max
x∈X

xj−min
x∈X

xj
)
+ 1

))
, (12b)

τf =
σf

(Lf + Lµf
+ Lσf

)
, (12c)

τg = {
σg

(Lg + Lµg + Lσg )
. (12d)

Proof: By slightly adapting [29, Lemma 1], we obtain

|µf (x)−f(x)|≤
√
βf

2
σf (x)+(Lf+Lµf

+

√
βf

2
Lσf

)τf

(13)

for all x ∈ X with probability of at least 1 − δ/2. Since the
right side of this inequality is linear in σf (·) and σf (x) ≤

max{σf (x), σf}, we substitute max{σf (x), σf} to obtain

|µf (x)−f(x)| ≤
√
βf

2
max{σf (x), σf}

+ (Lf + Lµf
+

√
βf

2
Lσf

)τf . (14)

Furthermore, maxx∈X xj − minx∈X xj is lower bounded
by 0, such that the argument of the logarithm in (12a)
is lower bounded by 2

δ . As δ ∈ (0, 1), it follows that
βf

4 ≥ 2 log(2δ ) > 1, such that it holds that

(Lf+Lµf
+

√
βf

2
Lσf

)τf ≤
√
βf

2
(Lf+Lµf

+Lσf
)τf . (15)

Using (12c), the right-hand side can be bounded by√
βf

2
(Lf + Lµf

+ Lσf
)τf ≤

√
βf

2
σf (16)

Finally, noting that σf ≤ max{σf (x), σf}, we obtain (11a).
The proof for (11b) follows analogously, such that the result
is a consequence of the union bound.
By exploiting the Bayesian foundation of GPs, this result
provides us with probabilistic uniform prediction error bounds
for f(·) and g(·) individually. The error bounds in the right-
hand side of (11) have only σf and σg as design parameters,
which have an intuitive interpretation: they provide a lower
bound on the certifiable prediction error. This lower bound
can be made arbitrarily small but, according to (12), a
reduction of σf and σg is accompanied by an increase of
the scaling factors βf and βg . One option for choosing the
parameters σf and σg is to define σf = minx∈X σf (x) and
σg = minx∈X σg(x) for fixed data sets. When the GP model
is learned online, this approach would require the numerical
computation of the minima after each model update, which
can be computationally prohibitive. An approach to mitigate
this issue will be introduced in Section III-D.

C. Safe Learning-Based Control Synthesis

While we assume to not have access to the functions f(·)
and g(·), GP regression allows us to infer models in the form
of µf (·) and µg(·) from training data. Since these models
come along with error bounds, cf. Lemma 2, we robustify
the CBF condition (5b) to account for model uncertainty.
However, even an infinitesimal increase of the conservatism
of (5b) can render this constraint infeasible. For example, if
c(x) = 0 and ∇Txψ(x) = 0 such that d(x) = 0, (5b) is
feasible, but any perturbation ϵ ∈ R>0 renders the condition
c(x)+ϵ+d(x)u ≥ 0 infeasible. Thus, we require an additional
assumption on the form of CBF that excludes this scenario,
which we specify as follows.

Assumption 7: There exist constants ζ1, ζ2 ∈ R>0 such that

α(ψ(x)) ≥ −∇Txψ(x)Ax+ζ2 ∀x : |∇Txψ(x)b| ≤ ζ1. (17)
This assumption essentially requires that the CBF ψ(·) does
not have a vanishing gradient in a neighborhood of the
boundary of the safe set where ψ(x) = 0. If this requirement
is satisfied, α(·) can always be chosen such that (17) holds
with arbitrarily large value ζ2. Hence, Assumption 7 is not
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restrictive in general. The practical implications of Assump-
tion 7 are simple: Whenever the gradient of the CBF ψ(x)
is small, a sufficiently large value of ζ2 in (17) ensures that
small perturbations cannot change the sign of c(x) in (5b).
Thereby, this assumption guarantees that sufficiently small
learning errors cannot render proofs of safety based on the
CBF ψ(·) invalid. Before stating our result on the safe control
with GP models, we introduce the shortand notation

σ̃f (x) = max{σf (x), σf}, (18a)

σ̃g(x) = max{σg(x), σg}. (18b)

These functions allow us to formulate the safety filter depicted
in Fig. 1 in a compact form and synthesize a safe control
law π(·) by solving a modified QP. The following result
identifies the necessary criteria to ensure safety using learned
GP models.

Proposition 1: Consider a system (1), GP priors (8a), (8b)
and a fixed data set D such that Assumptions 1 - 3, 6, and 7
are satisfied with ζ2 = ζ1(f̄+ 2

√
βfsf ) in (17). Assume that

µg(x)√
βgσ̃g(x)

> 1, (19)

holds for all x ∈ Rn. Then, the control law

π(x) = min
u

∥u− πnom(x)∥ (20a)

s.t. ξs(x)u ≤ ξ3(x), (20b)

where πnom : X → R is a Lipschitz nominal control law and

ξs(x) = sgn(ξ2(x)ξ3(x))ξ1(x) + ξ2(x), (21a)

ξ1(x) =
∣∣∇Txψ(x)b∣∣√βgσ̃g(x), (21b)

ξ2(x) = −∇Txψ(x)bµg(x), (21c)

ξ3(x) = α(ψ(x)) +∇Txψ(x)Ax+∇Txψ(x)bµf (x)
−
∣∣∇Txψ(x)b∣∣√βf σ̃f (x), (21d)

is feasible and ensures safety for all t ∈ R≥0 with probability
of at least 1− δ.

Proof: We approximate the unknown parts f(·) and g(·)
of (1) with the GP models µf (·) and µg(·) to obtain

ẋ = Ax+ b(ef (x) + µf (x) + (eg(x) + µg(x))u), (22)

where

ef (x) = f(x)− µf (x),
eg(x) = g(x)− µg(x),

denote the errors between the real and learned models. Sub-
stituting (22) in the CBF constraint (5b), we obtain

∇Txψ(x)
(
Ax+ b

(
ef (x) + µf (x) +

(
eg(x) + µg(x)

)
u
))

≥ −α(ψ(x)). (23)

Note that we cannot directly enforce constraint (23) via the
learned dynamics, as it relies on the unknown model errors
ef (·) and eg(·). Instead, we derive a probabilistic worst-case
evaluation of (23) by employing Lemma 2 to obtain∥∥∇Txψ(x)b∥∥√βgσ̃g(x)|u| − ∇Txψ(x)bµg(x)u ≤ α(ψ(x))+
∇Txψ(x)Ax+∇Txψ(x)bµf (x)−

∥∥∇Txψ(x)b∥∥√βf σ̃f (x), (24)

which holds with probability of at least 1 − δ. Using the
definition of ξi(·) in (21b)-(21d), we can compactly express
this as

ξ1(x)|u|+ ξ2(x)u ≤ ξ3(x). (25)

For all states x ∈ C which satisfy |∇Txψ(x)b| > 0, we
immediately obtain ξ1(x) > 0. Moreover, it follows from
(19) that ξ1(x) < |ξ2(x)|. From Lemma 3 in the Appendix,
we can equivalently express (25) as (20b). This allows us to
solve the optimization problem (20) analytically, such that it
is straightforward to show that

π(x) =

{
πnom(x), if ξs(x)πnom(x) ≤ ξ3(x)
ξ3(x)
ξs(x)

, else.
(26)

Moreover, due to the definition of ξs(·) in (21a), this control
law can be equivalently expressed as

π(x) =


πnom(x), if ξs(x)πnom(x) ≤ ξ3(x)

ξ3(x)
ξ2(x)+ξ1(x)

, else if ξ2(x)ξ3(x) > 0
ξ3(x)

ξ2(x)−ξ1(x) , else.
(27)

When |∇Txψ(x)b| = 0, Lemma 3 is inapplicable since
ξ1(x) = ξ2(x) = 0. However, Assumption 7 with ζ2 =
ζ1(f̄+ 2

√
βfsf ) guarantees that ξ3(x) ≥ 0 since

∇Txψ(x)bµf (x) ≥ −ζ1(f̄ +
√
βfsf )

−
∣∣∇Txψ(x)b∣∣√βf σ̃f (x) ≥ −ζ1

√
βfsf

with probability 1 − δ for all x with |∇Txψ(x)b| ≤ ζ1.
Thus, it follows that every control input u satsifies (25) when
|∇Txψ(x)b| = 0, which implies that the optimal control input
is given by πnom(x). Since |∇Txψ(x)b| = 0 implies ξs(x) =
0, this is also the control input provided by (27), such that this
control law can be applied without a separate distinction based
on |∇Txψ(x)b|. Hence, the control law (20) is feasible. Note
that the switching between πnom(·) and ξ3(x)/ξs(x) in (27) is
continuous as

πnom(x) =
ξ3(x)

ξs(x)
∀x : ξs(x)πnom(x) = ξ3(x). (28)

When ξ3(x) = 0, the switching in (27) is also continuous due
to

ξ3(x)

ξ2(x) + ξ1(x)
=

ξ3(x)

ξ2(x)− ξ1(x)
= 0. (29)

Finally, ξ2(x) = 0 implies ∇Txψb = 0 due to (19), such that
Assumption 7 guarantees π(x) = πnom(x) as shown before.
Hence, the control law cannot switch from ξ3(x)/(ξ2(x)+ξ1(x))
to ξ3(x)/(ξ2(x)−ξ1(x)) when ξ2(x) = 0. Since all of the control
laws in (27) are Lipschitz continuous on Rn due to the
assumed smoothness properties of πnom(·), ψ(·), α(·), µf (·),
µg(·), σf (·), and σg(·), and the switching between them is
continuous, it can be straightforwardly seen that, given points
x, x′ such that ξs(x)πnom(x) ≤ ξ3(x) and ξs(x′)πnom(x

′) >
ξ3(x

′), we obtain

|π(x)− π(x′)| ≤ L1 |x− xs|+ L2,3 |xs − x′|
≤ max{L1, L2,3}∥x− x′∥,
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where L1, L2,3 ∈ R>0 are Lipschitz constants of the first and
second/third line of (27) and xs ∈ Rn is the point on the
straight line connecting x, x′ with ξs(x′)πnom(x

′) = ξ3(x
′).

Therefore, π(·) is globally Lipschitz continuous, such that the
right-hand side of (1) with u = π(x) is globally Lipschitz
continuous and consequently, existence and uniqueness of the
solution of (1) under the control law (20) are guaranteed for
all t ∈ R≥0 [21, Theorem 3.1]. Forward invariance with prob-
ability of at least 1 − δ immediately follows from Nagumo’s
theorem [32, Theorem 4.7] because the CBF constraint (5b)
is satisfied by construction since (23) reflects its probabilistic
worst case. Thus, the controlled system is safe with probability
1− δ, which concludes the proof.

Proposition 1 allows us the straightforward design of a
safe control law, even though we only have access to the
learned models µf (·) and µg(·). For achieving this, we merely
need to check condition (19), which essentially requires a
sufficiently small posterior standard deviation σg(x) for all
x ∈ C together with a sufficiently small value σg . The reason
for this requirement can intuitively be explained as follows.
Due to the decoupling into the nominal behavior defined
through µg(·) and the learning error eg(·) in (22), we need to
ensure that the error term eg(x)u cannot dominate the nominal
effect µg(x)u of the control input u. This can be excluded if

µg(x) > eg(x). (30)

While a direct evaluation of this inequality is not feasible
due to the limited knowledge of g(·), we can leverage the
prediction error bound for GPs of Lemma 2 to address this.
Therefore, we obtain (19) as a sufficient condition with prob-
ability 1 − δ. This condition can consequently be interpreted
as an excitation condition ensuring the sufficiently accurate
identification of the GP model.

The implications of (19) are significant: it allows us to
handle the absolute value |u| in (24) using Lemma 3. This
enables us to show that the resulting control (20) is Lipschitz
continuous. This is in contrast to [18], where only local
Lipschitz continuity of the policy is shown, which restricts the
guaranteed existence of a solution to (1) under their controller
to finite time intervals. Note that the usage of Lemma 3 also
has practical implications: Proposition 1 allows us to solve
a QP (20), whereas SOCP are required in all other existing
combinations of GPs with CBFs to the best of our knowledge.
Therefore, Proposition 1 generally admits a computationally
more efficient implementation.

Remark 3: Proposition 1 extends to systems with multiple
inputs for which positive definitess of individual elements of
the matrix G(x) guarantees the positive definiteness (and thus
invertibility) of G(x). Therefore, the extension to multi-input
systems characterized by a block-diagonal matrix B ∈ Rn×n
and a diagonal matrix G(x) ∈ Rn×n, as mentioned in
Remark 1, can be achieved by employing multiple GP models,
each of them inducing an individual excitation condition of the
form (19). Note that the extension to a wider class of control-
affine systems can be achieved by deriving a vector-valued
analog to Lemma 3, which is left for future work.

D. Event-Triggered Learning for Feasibility Guarantees
While Proposition 1 provides a straightforward and compu-

tationally efficient approach for ensuring safety using learned
GP models, it requires that (19) is satisfied for all x ∈ X .
This assumption can be challenging to ensure and formally
showing that it holds requires determining the global minimum
of the left-hand side of (19), which is a non-convex function
in general. Thus, an intuitive approach is to update the GP
model online to improve its accuracy, thereby maintaining the
satisfaction of (19) if it holds at an initial state. However,
arbitrary training data does not achieve this goal in general.
Consider for example the scenario where for the system
(1), a training sample ([xT , u]T , y) with zero control input
is added to an existing data set to update the GP model.
Then, one sees from (10b) and (10d) that µg(·) and σg(·)
are not affected by the update. This is intuitive as it is simply
not possible to extract any information about g(·) from this
additional data. This example motivates the need for a control
law that provides a sufficient excitation during data collection
phases such that uncertainty about g(·) can be effectively
reduced. As we can only maintain safety when (19) is satisfied,
the goal of this control law is the generation of data that
increases µg(x)/

√
βgσ̃g(x) whenever it approaches 1, such that

(19) continues to be satisfied for after the update. Such a
control law can be obtained by modifying the design (20)
using an excitation filter as shown in Fig. 1, which is stated
in the following result.

Proposition 2: Consider a system (1), GP priors (8a), (8b)
and a fixed data set D such that Assumptions 1 - 7 are satisfied
with ζ2 = ζ1(f̄+ 2

√
βfsf ) in (17). Moreover, choose σg ∈

R>0 such that √
βgσg ≤

g

1 + ϵ+ γ
(31)

for some constants ϵ, γ ∈ R>0 and assume that s2g =
kg(x,x) > σ2

g . If (19) holds at a state x ∈ Rn, then with
probability of at least 1 − δ, the control input u = π̄(x) is
well-defined and satisfies (20b), where

π̄(x) =

{
π(x) if |π(x)| ≥ uGP

−sgn(ξs(x))uGP else,
(32)

π(·) is defined in (20) and the constant uGP is defined through

uGP =

√
((1 + ϵ+ γ)2βgs2g − g2)(s2f + s2on)

g2
. (33)

Moreover, the GP model trained with an updated data set D∪
{[x, π̄(x)]T , y} guarantees that

µg(x)√
βgσg(x)

≥ 1 + ϵ+ γ. (34)

Proof: Since (19) holds, (20) is well-defined and ensures
the satisfaction of (5b), i.e., it is safe. Furthermore, (20)
satisfies ξs(x)π(x) ≤ ξ3 by construction and consequently,
it follows from the proof of Proposition 1 that the satisfaction
of (5b) is also ensured through the constraint

sgn(ξs(x))u ≤ sgn(ξs(x))π(x). (35)
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Thus, it can be straightforwardly seen that the filter (32) only
modifies π(·) in a safe direction when |π(x)| ≥ uGP, such that
π̄(x) also satisfies (5b). It remains to show that (34) holds.
Assume σg(x) ≤ σg . Then, we have

µg(x)√
βgmax{σg(x), σg}

≥
g −

√
βgσg√

βgσg

≥ 1 + ϵ+ γ, (36)

where the second line follows from (31). We can completely
focus on the case σg(x) > σg and solve (34) for σg(x) using
the same inequalities as in (36), which yields the condition

σ2
g(x) ≤

g2

(1 + ϵ+ γ)2βg
. (37)

Due to [29, Theorem 1], this can be enforced through the
requirement

s2g −
s4gπ̄

2(x)

s2f + π̄2(x)s2g + σ2
on

≤
g2

(1 + ϵ+ γ)2βg
(38)

on the new data pair ([xT , π̄(x)]T , y). Solving this inequality
for |π̄(x)| results in |π̄(x)| ≥ uGP , where uGP is defined
via (33), such that the updated GP will satisfy (34) by
construction.

Since Proposition 2 modifies the control inputs based on
(20), most assumptions are identical to the ones in Proposi-
tion 1. However, it requires a tightened condition for σg in
order to allow to sufficiently reduce σ̃(·) through additional
training data. This effectively renders the lower bound σg
irrelevant for the analysis in the proof of Proposition 2. Based
on this property, the excitation filter (32) essentially restricts
the control input to sufficiently high amplitudes, but modifies
it in a safe direction. Our approach does not just specify the
direction in which the control input needs to be adapted, but it
directly provides its value through uGP . This value can easily
be computed and depends on the design parameters ϵ and γ as
well as hyperparameters sg , sf and son. Moreover, it provides
a useful intuition about the need for excitation: when

sg <
g

(1 + ϵ+ γ)
√
βg

(39)

holds, i.e., the prior GP error bound for g(·) already satisfies
(19), the lower bound uGP becomes complex valued. There-
fore, (32) and (20) become identical, such that no additional
excitation is enforced by (32). Since the whole motivation
behind this control law is to ensure the satisfaction of (19)
which is already guaranteed through the prior, this fall-back
to the safety-filtered control law π(·) is a natural behavior.

When sg is not small enough to ensure (39), the amplitude
of the excitation filtered controller π̄(·) is larger than that
of π(·), such that the difference to the nominal policy gets
increased for (32). Since this generally results in a worse
closed-loop performance, it is desirable to use π̄(·) only when
we collect training samples. Therefore, we distinguish two
phases with different goals in our overall control approach:

• When we are at risk of violating (19), we focus on
improving the model accuracy and employ the excitation
filter (32) to generate informative training samples. We

Algorithm 1 Safe Control via Event-Triggered Learning
1: N ← 0
2: compute βf using (12a)
3: determine βg , σg by solving (31) and uGP based on (33)
4: while true do
5: compute safety-filtered control π(x) using (20)
6: if µg(x(t))/

√
βgσg(x(t)) = 1 + ϵ then

7: N ← N + 1, tN = t
8: compute excitation-filtered control π̄(x) using (32)
9: apply u = π̄(x)

10: measure y = f(x(tN ) + g(x(tN ))u+ ω
11: D← D ∪ {([xT (tN ), u]T , y}
12: update µf (·), µg(·), σf (·), σg(·)
13: else
14: apply u = π(x)
15: end if
16: end while

determine the necessity of GP model updates through an
event trigger. Given N ∈ N,

tN+1 = inf
t>tN

t (40a)

such that
µg(x(t))√
βgσg(x(t))

≤ 1 + ϵ, (40b)

which is used to activate the excitation filter (32), i.e.,

u(t) = π̄(x(t)), t = tN . (41)

Therefore, new training samples have the form
([xT (tN+1), π̄(x

T (tN+1))]
T , y).

• When the model accuracy is sufficient, i.e., (40b) is not
satisfied, we focus on control performance and directly
apply the safe policy (20) which minimizes the deviation
from the nominal control law πnom(·). Thus, we choose
the control signal in this phase as

u(t) = π(x(t)), ∀t ∈ (tN , tN+1), N ∈ N. (42)

This event-triggered approach for simultaneous learning and
controlling system (1), which is summarized in Algorithm 1,
guarantees safety, as shown in the following result.

Theorem 1: Consider a system (1), GP priors (8a), (8b), and
a Lipschitz continuous nominal control law πnom(·) such that
Assumptions 1 - 7 are satisfied with ζ2 = ζ1(f̄+ 2

√
βfsf )

in (17). Moreover, assume that sg > σg . Then, for all N ∈
N, Algorithm 1 with design parameters ϵ, γ ∈ R>0 yields a
well-defined control law and guarantees safety during the time
interval [tN , tN+1) with probability of at least 1 − δ if (19)
and x(t) ∈ C are satisfied at t = tN .

Proof: Due to the GP model update event and the
satisfaction of (19) at t = tN , Proposition 2 guarantees that
(19) holds for all t ∈ [tN , tN+1), where tN+1 is the next
trigger time instance defined in (40b). Note that the switching
between π̄(·) and π(·) at t = tN renders the control law
defined through Algorithm 1 discontinuous and a function of
the time t. Nevertheless, an extended solution of (1) exists
[33, Chapter 2, Theorem 1.1] and is unique [33, Chapter 2,
Theorem 2.2] as the right-hand side of (1) under the control
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law defined by Algorithm 1 is a measurable function in
time t, uniformly Lipschitz continuous in x, and bounded on
the compact set C due to the Lipschitz continuity of f(·),
g(·), π(·) and boundedness of π̄(·). Since x(tN ) ∈ C and
(20b) is satisfied with probability of at least 1 − δ for all
x ∈ C and t ∈ [tN , tN+1) due to Propositions 1 and 2, we
employ Nagumo’s theorem [32, Theorem 4.7] guaranteeing
the forward invariance. Thus, safety is guaranteed during each
time interval [tN , tN+1) with probability 1− δ.

This result guarantees that the system stays in the safe set
during the time between two GP update events with probability
1 − δ if it starts inside it at a point where (19) is satisfied.
This condition is necessary to prevent any safety violations
from the control before any safe learning is possible. This is
easily satisfied at the initial condition x(0) by initializing the
GP model with a suitable prior or by providing training data
obtained a priori, e.g., by running a locally safe controller.

It is important to note that the safety guarantee only holds
for a single time interval with probability 1 − δ since each
model update induces a new GP model and requires a new
error bound [2], [3]. However, this does not pose a critical
limitation since it straightforwardly follows from Theorem 1
and the union bound that for any time interval [0, tN ] safety
and feasibility are guaranteed with probability max{0, 1 −
Nδ}. Therefore, choosing a sufficiently small δ can ensure
safety for any finite number of sampling events. Since we
will show in Proposition 3 that the inter-event time is lower
bounded by a positive value, this immediately implies that
safety can be guaranteed over arbitrary, finite time intervals
[0, t], which illustrates the practical strengths of Theorem 1.

Remark 4: It is possible to extend the safety guarantees
to unbounded time intervals [0,∞) by employing a decaying
sequence of δN , similarly as proposed in [2], [3], e.g., δN =
6δ
Nπ2 , such that

∑∞
N=1 δN = δ. However, this leads to a

growing scaling factor βg due to its dependency on δ.
Remark 5: Since the accuracy of our model for g(·) based

on condition (19) is crucial for ensuring safety, our proposed
event-triggered online learning strategy focuses purely on
reducing the uncertainty about g(·). However, this does not
mean that the model accuracy for f(·) is irrelevant for the
CBF constraints. Since the model error of µf (·) is considered
in (21d), high uncertainty about f(·) generally causes more
restrictive CBF constraints (20b) and thus higher control effort.
Therefore, it is generally beneficial for control performance
to also improve the model accuracy of µf (·). This could
potentially be achieved by employing an additional event
trigger for learning f(·), but the design and detailed analysis
of such a trigger are beyond the scope of this paper.

E. Ruling out Zeno Behavior

Avoiding Zeno behavior is crucial in event-triggered learn-
ing with GPs to prevent updates from accumulating in a finite
amount of time, which would make a practical implementation
impossible. In order to exclude Zeno behavior in event-
triggered learning, it is sufficient to uniformly lower bound
the time between any two consecutive events by a positive
constant. This approach is employed in the following result.

Proposition 3: Consider a system (1), and GP priors (8a),
(8b) such that Assumptions 1 - 7 are satisfied. Moreover,
assume that (19) is satisfied at t = 0 and sg > σg . Then,
with probability of at least 1 − δ, Algorithm 1 with design
parameters ϵ, γ ∈ R>0 triggers model updates with an inter-
event time ∆N = tN+1 − tN satisfying ∆N ≥ γ/LΓ for
all N ∈ N, where LΓ denotes the Lipschitz constant of the
triggering function

Γ(t) =
µg(x(t))√
βgσ̃g(x(t))

. (43)

Proof: The triggering function Γ(t) is Lipschitz con-
tinuous because the standard deviation and mean functions
are Lipschitz continuous, and σ̃g(x) is positive. Moreover,
the trajectory x(t) is Lipschitz continuous with respect to
time since it is the solution of a differential equation defined
through bounded closed-loop dynamics, as discussed in the
proof of Theorem 1. Let LΓ denote the Lipschitz constant of
Γ(·) and let tN , tN+1 denote two consecutive triggering times.
Then, we have

|Γ(tN+1)− Γ(tN )| ≤ LΓ(tN+1 − tN ). (44)

Using the triangle inequality and the positivity of Γ(·),

Γ(tN+1) ≥ Γ(tN )− |Γ(tN+1)− Γ(tN )| . (45)

Therefore, it follows from Proposition 2 that

Γ(tN+1) ≥ 1 + ϵ+ γ − LΓ(tN+1 − tN ) (46)

since tN is a triggering time at which a model update occurs.
Due to the triggering condition (34), we know that the next
event occurs when Γ(tN+1) = 1 + ϵ. This implies that

1 + ϵ ≥ 1 + ϵ+ γ − LΓ(tN+1 − tN ) (47)

must hold. Therefore, we obtain

(tN+1 − tN ) ≥ ∆N =
γ

LΓ
, (48)

which concludes the proof.
This result exploits the Lipschitzness of the state trajectory

together with the GP mean µg(·) and the standard deviation
σg(·) to obtain a Lipschitz constant LΓ. Since update events
are triggered with a higher threshold than ensured after the
update, the Lipschitz continuity of Γ(·) directly implies a lower
bound on the inter-event times. The constant LΓ captures the
change rate of the system and the dependency on the GP prior.
Intuitively, when the system or the GP model exhibit a high
variability, LΓ is large, so that a high triggering frequency can
occur. This can be partially compensated by reducing the gap
between the trigger condition and the update objective, which
is given by the constant γ. Hence, this parameter allows us to
effectively tune the inter-event times of Algorithm 1.

IV. SAFE CONTROL THROUGH EVENT-TRIGGERED
LEARNING FOR SAMPLED-DATA SYSTEMS

To address the challenges faced in practical control applica-
tions, we extend the results developed above to sampled-data
systems. For this purpose, we introduce the concept of robust
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sampled-data control barrier functions, which consider model
errors and the effects of delays due to sampling in Section
IV-A. The safe online learning mechanism for sampled-data
systems is presented in Section IV-B.

A. Control Synthesis for Sampled-Data Systems
While the CBF condition (24) is used for ensuring safety

using learned GP models, it relies on the assumption that
the computed control input is applied continuously. In real-
world scenarios, controllers operate in discrete time using fixed
sampling frequencies on systems that evolve continuously,
therefore, the system must consider the sampled-data control
constraint (6). As a result, it becomes necessary to modify
the condition (24) to enable the construction of a control law
that ensures safety throughout the entire sampling period and
prevents safety violations. We address the additional constraint
(6) by employing a robust sampled-data version of the CBF
constraint (20b) in an input-constrained QP

uk = min
u

∥u− πnom(xk)∥ (49a)

ξ̃s(xk)u ≤ ξ̃3(xk), (49b)
− ū ≤ u ≤ ū (49c)

with

ξ̃3(xk) = ξ3(xk)− ϕT,
ξ̃s(xk) = sgn(ξ2(xk)ξ̃3(xk))ξ1(xk) + ξ2(xk),

robustness margin ϕ ∈ R+, sampled state xk = x(kT ), and
control input constraint ū ∈ R>0 to obtain a safe control signal
u(t) = uk for all t ∈ [kT, (k + 1)T ). The additional input
constraint (49c) is essential for deriving a sufficiently large
robustness margin ϕ to compensate for effects of the sampled-
data realization as we show in the following result.

Proposition 4: Consider a system (1) with sampled-data
control constraint (6), GP priors (8a), (8b) and a fixed data
set D, and a CBF ψ(·) inducing a bounded safe set C such
that Assumptions 1 - 4, 6, and 7 are satisfied with ζ2 =
ζ1(f̄+ 2

√
βfsf ) + ϕ̃, ϕ̃ ∈ R>0, in (17). Assume that

µ(x)√
βgσ̃g(x)

≥ 1 + ϵ (50)

for all x ∈ Rn and some ϵ ∈ R>0. If

T ≤ max

{
ϕ̃

ϕ
,
ζ1ϵ

√
βgσgū−maxx∈C ξ3(x)

ϕ

}
, (51)

ū >
max
x∈C

ξ3(x)

ζ1ϵ
√
βgσg

, (52)

where
ϕ = ((Lξ1 + Lξ2)ū+ Lξ3)(f̄+ ḡū) (53)

and Lξi denote the Lipschitz constants of the functions ξi(·),
then, the sampled-data controller (49) with robustness margin
(53) is feasible and ensures safety for all t ∈ R≥0 with
probability of at least 1− δ.

Proof: We prove the result by bounding the difference
between the CBF condition (25) evaluated at the sampling

times tk = kT and arbitrary times within the sampling
intervals [tk, tk + T ). For this, we exploit the continuity of
the functions ξi(·) and the trajectory x(t). Due to the Cauchy-
Schwarz inequality and reverse triangle inequality, we have

∥ξ1(x) − ξ1(xk)∥ ≤ (54)

∥b∥
√
βg

∥∥∇Txψ(x)σ̃g(x)−∇Txk
ψ(xk)σ̃g(xk)

∥∥ .
Assumption 2 and compactness of the state space imply that
we can bound the gradient of the barrier function by

|∇Txψ(x)| ≤ Cψ. (55)

By exploiting the Lipschitz continuity of the CBF candidate
function ψ(·) and posterior standard deviation σ̃g(·), we have

∥ξ1(x) − ξ1(xk)∥ ≤ ∥b∥
√
βg(CψLσg+Cσ̃gLψ)∥x−xk∥

= Lξ1∥x− xk∥, (56)

where Cσg denotes upper bound on σg(·) which is guaranteed
to exist since a stationary kernel is assumed to be used in GP
regression. Applying the same procedure as for ξ1(·), we have

∥ξ2(x)− ξ2(xk)∥ ≤ ∥b∥ (CψLµg+LψCµg )∥x− xk∥
= Lξ2∥x− xk∥. (57)

Analogously, we obtain that

∥ξ3(x) − ξ3(xk)∥ = Lξ3∥x− xk∥, (58)

where

Lξ3 = Lα + Cψ(∥A∥+ ∥b∥Lµf
+ ∥b∥

√
βfLσf

)

+ Lψ(∥A∥ x̄+ ∥b∥Cµf
+ ∥b∥

√
βfCσf

). (59)

Combining the Lipschitz bounds (56), (57), (58), we obtain

ξ1(x(t))|u|ξ2(x(t))u− ξ3(x(t)) ≤ (60)
ξ1(xk)|u|+ ξ2(xk)u− ξ3(xk)
+ ((Lξ1 |u|+ Lξ2)|u|+ Lξ3)∥xk − x(t)∥.

It remains to bound the state difference ∥xk − x(t)∥ within
sampling intervals [tk, tk + T ). For notational simplicity, we
denote the bound on the posterior mean function µf (·) by

µf (x) ≤ f̄ +
√
βfsf = Cµf

, (61)

where f̄ represents the upper bound on the functions f(·) as
defined in Remark 2. Then we exploit the boundedness of
f(·), g(·) and u, such that

∥xk − x(t)∥ ≤ (f̄ + ḡū)(t− tk), (62)

which holds due to Jensen’s inequality. Therefore, we obtain
the inequality

ξ1(x(t))|u|+ ξ2(x(t))u− ξ3(x(t)) ≤ (63)
ξ1(xk)|u|+ ξ2(xk)u− ξ3(xk) + ϕT,

for all t ∈ [tk, tk + T ). As a result of this reasoning and the
implications of the satisfaction of (25) on the CBF condition
(5b), safety follows if (49b) and (49c) are jointly feasible.
To show this property, we distinguish two cases based on the
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value of ξ̃3(x). First, we consider the case that ξ̃3(x) < 0.
Then, the constraint

ξ1(xk)|u|+ ξ2(xk)u− ξ3(xk) + ϕT ≤ 0 (64)

leads to the requirement on the input constraint

ū ≥ |ξ3(xk)|
|ξ2(xk)| − ξ1(xk)

+
ϕT

|ξ2(xk)| − ξ1(xk)
, (65)

where the first term defines the maximum control input for the
continuous-time controller and the second term describes the
increase due to the consideration of inter-sampling effects. In
order to bound the numerator, we observe that Assumption 7
with ζ2 = ζ1(f̄+ 2

√
βfsf ) + ϕ̃ guarantees ξ3(x) ≥ ϕ̃ when

|∇Txψ(x)b| ≤ ζ1. Thus, ξ̃3(x) < 0 and T ≤ ϕ̃/ϕ imply
|∇Txψ(x)b| > ζ1, such that we obtain

|ξ2(x)|−ξ1(x) = |∇Txψ(x)b|
(
|µg(x)|−

√
βgσ̃g(x)

)
≥ ζ1ϵ

√
βgσ̃g(x)

where the second line follows from (50) and the lower bound
µg(x) ≥ g −

√
βgσg(x). This inequality directly leads to the

input bound restriction

ū ≥
max
x∈C

ξ3(x)

ζ1ϵ
√
βgσg

+
ϕT

ζϵ
√
βgσg

. (66)

As the second summand is linear in T , the feasibility is
ensured by (52) and a sufficiently small sampling time T .
In order to obtain the upper bound for these sufficiently small
sampling times T , we solve (66) for T , which yields (51)
and concludes the first case. In the second case, we consider
ξ̃3(x) ≥ 0, such that the constraint (64) leads to a requirement
on the input constraint of the form

|u| ≤ |ξ3(xk)|
|ξ2(xk)| − ξ1(xk)

+
ϕT

|ξ2(xk)| − ξ1(xk)
, (67)

where the absolute value on |u| is resolved depending on the
sign of ξ1(x). Since constraints of this form always include
the trivial solution u = 0, feasibility is always guaranteed.
Therefore, feasibility is ensured if the conditions (52) and (51)
based on the first case are satisfied.
In comparison to the continuous-time result in Proposition 1,
the tightened condition (50) for the posterior GP is required.
This necessity arises due to the additional requirement for
compliance with the input constraint (49c), since it can be
straightforwardly seen that for ϵ → 0, the right-hand side
of (52) diverges to ∞. Thus, Proposition 4 has the intuitive
interpretation that a more accurate GP model generally admits
smaller control input bounds ū. For the sampling time con-
straint (51), the interpretation is also straightforward. On the
one hand, smaller Lipschitz constants Lξi imply slower vary-
ing safety conditions and thus, generally admit larger sampling
times T . Larger margins ϕ̃ have a similar effect. An increase
of the input bound ū allows larger sampling times T when it is
close to the admissible minimum value maxx∈C ξ3(x)/ζ1ϵ

√
βgσg,

but causes a reduction when ū is significantly larger than this
value. This effect is caused by the quadratic dependency of ϕ
on ū, which overcomes the linear growth in (51). Thereby, this
behavior intuitively captures the effect that excessive control

Algorithm 2 Safe Online Learning for Sampled-Data Systems
1: N ← 0, k ← 0, t← 0
2: compute βf using (12a)
3: determine βg , σg by solving (31) and uGP based on (33)
4: while true do
5: if t < kT then
6: apply u
7: else
8: compute safety-filtered control uk using (49)
9: k ← k + 1

10: if
√
βσg(xk)
µg(xk)

≤ 1 + ϵ+ γ then
11: N ← N + 1
12: compute excitation control ūk using (68)
13: set u = ūk and apply u
14: measure y = f(xk) + g(xk)u+ ω
15: D← D ∪ {([xTk , u]T , y}
16: update µf (·), µg(·), σf (·), σg(·)
17: else
18: set u = uk and apply u
19: end if
20: end if
21: end while

inputs can cause a significant change in the system state
within a very short amount of time, but a sufficiently large
control input is necessary to account for the negative effects
of sampled-data control.

Remark 6: Control input constraints (49c) are necessary in
contrast to the continuous-time analysis in Section III to bound
the effect of control on the system over a finite interval of time.
Since these constraints can potentially cause feasibility issues,
the bound ū needs to be selected sufficiently large to admit the
control inputs required for ensuring safety, which is ensured
via (52). Note that it is straightforward to also consider input
bounds satisfying (52) for the results in Section III.

B. Event-Triggered Learning in Sampled-Data Systems
Similarly to Section III-D, we augment the GP-based safe

control law (49) using an event-triggered learning to avoid the
requirement of a priori satisfaction of (50). Since the guar-
antees of Proposition 2 transfer to the sampled-data control
scenario, we can use it as excitation filter. Using the sampled-
data control law (49), the resulting control law reads as

ūk =

{
uk if |uk| ≥ uGP

−sgn(ξ̃s(xk))uGP else.
(68)

Based on this definition, we can distinguish again between
the learning and control focused phases of the overall control
law:

• The excitation filter should be applied only when ac-
curacy of µg(·) is necessary. Therefore, we activate the
excitation filter (68) by a sampled-data event trigger

tN+1 = inf
kT>tN

kT (69a)

such that
µg(x(kT ))√
βgσg(x(kT ))

≤ 1 + ϵ+ γ, (69b)
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such that we employ the control signal

u(t) = ūk, ∀t ∈ [tN+1, tN+1 + T ), N ∈ N, (70)

to obtain a new training data sample
([xT (tN+1), ūk]

T , y) with k = tN+1

T .
• When the model accuracy is sufficient, we employ the

safe control law (49), resulting in

u(t) = uk, ∀t∈ [tk, tk+1), k∈N, k ̸=
tN
T
,N ∈N. (71)

Note that the event trigger (69) is restricted to sampling
times kT , k ∈ N, since the sampled-data realization of the
control law prevents us from taking measurements at arbitrary
times. To account for this restriction, the sampling occurs
preemptively using the tightened threshold 1+ϵ+γ compared
to (40). The resulting procedure is summarized in Algorithm 2,
for which the safety guarantees from the continuous-time
scenario can be maintained as shown in the following result.

Theorem 2: Consider a system (1) with sampled-data con-
trol constraint (6), GP priors (8a), (8b), and a control barrier
function ψ(·) inducing a bounded safe set C such that As-
sumptions 1 - 7 are satisfied with ζ2 = ζ1(f̄+ 2

√
βfsf ) + ϕ̃,

ϕ̃ ∈ R>0, in (17). Moreover, assume that sg > σg . Then, for
all N ∈ N, Algorithm 2 with design parameters ϵ, γ ∈ R>0

and ϕ defined in (53) yields a well-defined control law and
guarantees safety during the time interval [tN , tN+1) with
probability of at least 1− δ if

ū > max

uGP,
max
x∈C

ξ3(x)

ζ1ϵ
√
βgσg

 (72)

γ ≥ LΓT, (73)

and (51) hold, and (19) and x(t) ∈ C are satisfied at t = tN .
Proof: Whenever µ(xk)/

√
βgσ̃g(xk) ≥ 1 + ϵ + γ, (73)

and Proposition 3 guarantee that (50) holds until the next
time step k + 1. If this condition is not satisfied, the exciting
control input is applied and a new data point is generated, such
that Proposition 2 guarantees µ(xk)/

√
βgσ̃g(xk) ≥ 1 + ϵ + γ

for the updated GP model. Hence, (50) is also satisfied
until the next time step k + 1. Therefore, it follows from
(51), (72), Proposition 4 and the straightforward adaptation
of Proposition 2 to the sampled-data control setting that the
control law is well-defined and guarantees safety during the
time interval [tN , tN + 1), for N ∈ N.

This result transfers the guarantees from the continuous-
time controller outlined in Algorithm 1 to the sampled-data
case. Due to the necessity of input constraints, this transfer
can only be achieved under additional restrictions. Similarly
to Proposition 4, the control input bound must be sufficiently
large as defined in (72), which in the event-triggered learning
scheme also requires the admissibility of the control input
uGP necessary for sufficiently exciting the system. Moreover,
the upper bound (51) from Proposition 4 is inherited.
Finally, the inter-event time must admit the realizability of
the GP updates under the sampled-data paradigm, i.e., the
inter-event times ∆i must be larger than the sampling time
T , which induces (73). Therefore, the additional conditions
of Theorem 2 compared to Theorem 1 intuitively follow from

the sampled-data realization and can generally be satisfied
straightforwardly by choosing a sufficiently large value ū and
a sufficiently small sampling time T .

V. NUMERICAL EVALUATION IN ADAPTIVE CRUISE
CONTROL

In order to demonstrate the effectiveness of the derived
theory, we consider its application in the example of an adap-
tive cruise control. In Section V-A, we evaluate our proposed
framework on continuous-time controllers. The extenstion to
sampled-data systems is discussed in Section V-B.

A. Safe Control in Continuous Time
We demonstrate the effectiveness of our framework by con-

sidering the example of adaptive cruise control as presented,
e.g., in [17]. To enable the straightforward applicability of the
proposed theory, we represent the dynamics as[

ṽ
z

]
︸︷︷︸
ẋ

=

[
0 0
−1 0

]
︸ ︷︷ ︸

A

x+

[
1
0

]
︸︷︷︸
b

(
−Fr(ṽ)

m︸ ︷︷ ︸
f(x)

+
2(1+ 1

2sin(
v
2 ))

m︸ ︷︷ ︸
g(x)

u

)
,

(74)
where the state x=

[
ṽ z

]T ∈ R2 is composed of the distance
to the front vehicle z and the difference ṽ = v−v0 between the
ego vehicle velocity v and a front vehicle’s velocity v0, which
we assume to be constant and known. The parameter m=1650
corresponds to the ego vehicle’s mass and Fr(ṽ) = f0+f1(ṽ+
v0) + f2(ṽ + v0)

2 is the rolling resistance force on the ego
vehicle with parameters f0 = 0.2, f1 = 10 and f2 = 0.5.
Note that we employ a modification of the original dynamics
considered in [17] by defining a state-dependent function g(·)
instead of a constant in order to render the problem slightly
more challenging. This change does not have an impact on
the structure of the problem, such that it exhibits the form
(1) regardless of the choice of positive definite functions g(·).
The objective is to reach the desired velocity vd, for which we
design a nominal velocity controller πnom(x) = −2000(v −
vd). Since it is crucial that no collision with the front vehicle
occurs, we define a CBF

ψ(x) = z − Th(ṽ + v0), (75)

where Th = 1.8 is the lookahead time. Moreover, we use
α(ψ) = 65ψ. As we assume that the functions f(·) and
g(·) are unknown, we model their behavior by putting a prior
GP distribution GP (0, kf (·, ·)) and GP (0, kg(·, ·)) on them.
For kf (·, ·) and kg(·, ·), we employ the squared exponential
kernel, whose hyperparameters are set to lf = 1, lg = 2,
sf = 0.1, sg = 4 · 10−4. In order to comply with the required
feasibility of the CBF condition at t = 0 in Theorem 1, we
initialize the composite GP model (10a) - (10d) with one
training point before starting Algorithm 1. All training samples
that we obtain through our proposed framework are perturbed
by Gaussian noise with standard deviation σon = 0.01.
Furthermore, we choose sufficiently small values τf = 10−6

and τg = 10−6 for computing (12a) and (12b), such that
(31) with δ = 0.01 can be satisfied by solving for σg .
When executing Algorithm 1, we employ the conservative
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prior bounds g = 1
2000 and g = 3

1000 and choose ϵ = 0.2
and γ = 0.5 for the design parameters. To demonstrate the
effectiveness of the proposed safe control approach through
event-triggered learning, we apply Algorithm 1 in a setting
with conflicting goals of the nominal controller πnom(·) and
the safety conditions by setting v0 = 14 and vd = 24, i.e., the
desired velocity vd is higher than the front vehicle’s velocity
v0. The resulting state trajectories are depicted in Fig. 2. In the
top plot, we observe that the velocity of the vehicle steadily
approaches vd until there is a noticeable reduction in distance,
as shown in the bottom plot. Due to the CBF, the speed of
the vehicle converges to the speed of the ego vehicle v0,
while ensuring a safe distance. This distance can be directly
quantified using the definition of the CBF in (75), which yields
Thv0 = 25.2. This behavior can be observed independently
of the prior availability of exact model knowledge, which
is due to our proposed strategy for event-triggered learning
strategy. As depicted at the top of Fig. 3, the triggering
condition (40) generates data at an almost constant rate at the
beginning in order to achieve the necessary model accuracy.
For ensuring a sufficient information gain with each of these
samples, the magnitude of the control input resulting from the
CBF-QP (20) is adapted in the safe direction after it drops
below the excitation threshold ūGP. Note that Algorithm 1
not only triggers update events when close to the constraint
boundary as maintaining the feasibility of the CBF-QP (20)
is crucial regardless of our distance from the boundary. When
the dynamical system has almost reached a stationary point
after t = 13, the triggering stops. Thereby, merely 116 data
points are necessary to ensure safety using our event-triggered
learning approach. This is in strong contrast to a time-triggered
online version without excitation filter. It can be clearly seen
at the top of Fig. 3 that periodically updating the GP model
cannot ensure feasibility of the CBF-SOCP, which causes
a diverging trajectory and constraint violations after ≈ 6s.
As illustrated at the bottom of Fig. 3, Algorithm 1 achieves
these safety guarantees without excessive cautiousness: The
CBF converges to a value very close to the safety threshold
ψ(x) = 0, but continuously stays above it. Therefore, this
example clearly illustrates the effectiveness and data-efficiency
of ensuring safety using Algorithm 1.

Additionally, we analyze the influence of parameters on
the number of triggering events during the first 8s of the
simulation, where our focus is primarily on learning and
triggers occur more frequently. We first investigate how the
trade-off between control effort and number of trigger events
depends on the design parameter γ by running 100 simulations
per choice of γ with the nominal parameters values for v0, x0

and vd perturbed by value randomly sampled from a uniform
distribution over [−2, 2]. As shown in Fig. 4, increasing
γ causes growing control inputs uGP, while simultaneously
reducing the number of sampled data points. This behavior
arises because higher control inputs provide more information
about g(·), thus requiring fewer data points to sufficiently
reduce the uncertainty for guaranteeing (19). Furthermore,
the increase in the value of the signal variance s2g of the
kernel function of the GP leads to a decrease in triggering
events, as depicted in the Figure 5. Using larger values of s2g
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Fig. 2. The continuous-time control approach in Algorithm 1 with event-
triggered online learning results in almost identical state trajectories as a
CBF-based controller with exact model knowledge in contrast to an anal-
ogous approach with periodically updated GP model, which becomes
infeasible after ≈ 6s. Top: The velocity of the ego vehicle approaches
its desired value vd at the beginning, but eventually converges toward
the front car’s velocity v0 to preserve a safe distance. Bottom: The
distance to the front vehicle decays continuously until a safety distance
of approximately Thv0 = 25.2 is maintained.
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Fig. 3. The event-triggered update scheme in Algorithm 1 ensures
the necessary model accuracy for guaranteeing safety by sampling
data until the system state has converged and the model can be kept
unchanged. Top: When the control input resulting from the CBF-QP (20)
is not large enough to provide sufficient information for the GP update,
the excitation filter (32) magnifies it in a safe direction such that the
excitation threshold uGP is exceeded. Bottom: The value of the control
barrier function approaches its safety threshold ψ(x) = 0 but never
falls below it, which illustrates the safety guarantees of Algorithm 1.

requires higher control inputs uGP due to (33), such that more
information can be gathered from a single data point and fewer
training samples is sufficient. Lastly, the effect of the length
scale on the number of triggering events is shown in Figure 6.
As observed, increasing the lengthscale of the GP process will
lead to a decrease in the number of triggering events since
the uncertainty grows slower with the distance to the closest
training data point. Note that an increase in the noise variance
σ2
on does not change the qualitative behaviors, but mainly

causes an increase in the necessary control inputs uGP, which
simultaneously reduces the number of trigger events Ntr.
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Fig. 4. The average number of triggering events Ntr based on the
different values of the excitation filter uGP evaluated on 100 trajectories
with randomized simulation setting.
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Fig. 5. The average number of triggering events Ntr based on the
different values of the signal variance sg of a GP model evaluated on
100 trajectories with randomized simulation setting.
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Fig. 6. The average number of triggering events Ntr based on the
different values of the lengthscale lg of a GP model evaluated on 100
trajectories with randomized simulation setting.

B. Safe Sampled-Data Control

In order to investigate the behavior of the presented ap-
proach for safe event-triggered learning in sampled-data sys-
tems, we adopt the setting from Section V-A, introducing
additional necessary parameters for our proposed theory. From
Assumption 1, the function f(·) is bounded, and we set the
upper bound to f̄ = 49000. In order to ensure feasibility, we
introduce input constraints and set ū = 20000.

Based on these parameters, we run Algorithm 2 with
sampling time T = 0.01, which leads to the results depicted
in Fig. 7. While the general behavior of the state trajectories
look similar to the continuous-time scenario illustrated in
Fig. 2, minor differences can be observed. Due to the tightened
safety conditions in the sampled-data scenario, the ego vehicle
keeps a slightly larger distance to the vehicle in front of
it. This is an intuitive effect since it effectively gives the
controller extra time to react since control updates are only
possible at sampling times. Moreover, it is clearly visible
that the ego vehicle does not reach the desired vehicle, even
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Fig. 7. The sampled-data control approach Algorithm 2 with sampling
time T = 0.01 ensures safety in a practically realizable setting with a
similar performance as the continuous time approach. Top: Due to the
tightened safety conditions in the sampled-data case, the ego vehicle
does not reach the desired velocity even when far away from the
front vehicle. Bottom: The increased conservatism is also visible in the
asymptotic distance to the target vehicle, which remains considerably
larger than in the continuous-time control approach.
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Fig. 8. By increasing the robustness of the CBF conditions depending
on the sampling time T , Algorithm 2 provides an adaptive conservatism
converging to the continuous-time behavior for T → 0. Top: For a
comparatively large sampling time T = 0.01, the constraint tightening
necessary to account for inter-sampling effects can cause the excitation
filter to change the sign of control inputs compared to the continuous-
time scenario. Bottom: Larger sampling times T require a higher cau-
tiousness, such that the achievable proximity to the safety threshold
ψ(x) = 0 increases with T .

when the distance to the front vehicle is large. While this
effect is not so intuitive, it can be easily explained when
looking at the applied control inputs depicted at the top
of Fig. 8. Due to the tightened CBF constraints to account
for inter-sampling effects, the excitation filter yields negative
control inputs, which causes the visible reduction in velocity
compared to the continuous-time controller. These negative
effects of the sampled-data implementation can be reduced by
decreasing the sampling time T as illustrated at the bottom
of Fig. 8. While a significant distance to the safety threshold
ψ(x) = 0 is visible for T = 0.01, it continuously reduces
such that barely any difference exists between the continuous-
time realization and the sampled-data implementation with
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T = 0.0001. Since the number of triggered update events
remains almost unaffected with a total of 77 triggers in this
setting, the sampled-data approach in Algorithm 2 provides us
with a straightforward and practically implementable way to
ensure safety using data-efficient online learning.

VI. CONCLUSIONS

We have presented a novel approach for safe control through
GP-based event-triggered learning in a partially unknown
environments. For achieving this, we first introduce robust
CBF conditions for ensuring the safety of unknown dynamical
systems evolving continuously in time when only a GP model
is available. Based on these conditions, we design strategic
triggers, which update the model using data generated online,
such that they provide a sufficient excitation to efficiently
reduce uncertainty. Since controllers typically need to be
implemented in a sampled-data fashion, we extend the method
to account for inter-sampling effect. Safety guarantees for the
resulting online learning control approach and the absence
of Zeno behavior with the proposed triggering scheme are
formally shown. The effectiveness of our theoretical results is
demonstrated in numerical simulations of an adaptive cruise
control system. Future work will focus on extending the pro-
posed framework to more general classes of system dynamics
and validating our results in hardware experiments.

APPENDIX

Lemma 3: Consider a control input u ∈ R and constants
c1 ∈ R>0, and c2, c3 ∈ R, such that c1 < |c2|. Then,

c1|u|+ c2u ≤ c3 (76)

is equivalent to the condition

(sgn (c2c3) c1 + c2)u ≤ c3. (77)
Proof: We can resolve the absolute value in (76) by

considering two cases based on the sign of the control input:

1) u ≥ 0 : c1|u|+ c2u ≤ c3 ⇔ (c1 + c2)u ≤ c3 (78)
2) u < 0 : c1|u|+ c2u ≤ c3 ⇔ (−c1 + c2)u ≤ c3 (79)

It remains to unify these two cases into a single equation again.
For this purpose, we consider four different cases based on the
signs of the constants c2 and c3:

1) c2 ≥ 0 and c3 ≥ 0: Given the conditions c2 ≥ 0 and c1 <
|c2|, it follows that (−c1+c2) > 0. Therefore, (76) is satisfied
for all u < 0 as c3 ≥ 0. This implies that the constraint (79)
is redundant in this case. It can directly be seen that (78) is
not redundant in this case since for u sufficiently large, it is
not satisfied anymore. Finally, (c1 + c2) > 0, such that (78)
is also redundant for u < 0. Therefore, (76) is equivalent to
(78) for all u ∈ R in this case.

2) c2 ≤ 0 and c3 ≤ 0: Given the conditions c2 < 0 and
c1 < |c2|, it follows that (c1 + c2) < 0. As c3 ≤ 0, (79)
cannot be satisfied by any control input u < 0. Similarly, we
have (−c1+c2) < 0 such that (78) cannot be satisfied for any
control input u < 0. Thus, both constraints are equivalent for
u < 0. For u > 0, only (78) needs to be satisfied, which can

easily be checked to be a non-trivial constraint. Hence, we can
equivalently express (76) as (78) for all u ∈ R in this case.

3) c2 ≥ 0 and c3 ≤ 0: Analogous to case 1, we have
(c1 + c2) > 0. Given that c3 ≤ 0, it can be straightforwardly
seen that no control input u > 0 can satisfy (78). Moreover, we
also have (−c1+c2) > 0, such that also no control input u > 0
can satisfy (79). In other words, both constraints are equivalent
for u > 0. However, for u < 0, only (79) needs to be satisfied
and can easily be shown to be non-trivial. Therefore, (76) is
equivalent to (79) for all u ∈ R in this case.

4) c2 ≤ 0 and c3 ≥ 0: In the final case, we have, analogously
to case 2, (c1 + c2) < 0. Given that c3 ≥ 0, any control input
u > 0 automatically satisfies (78), rendering it redundant. As
(−c1 + c2) < 0, (79) is also redundant for u < 0. However,
it can easily be checked that for u < 0 it is non-trivial, such
that we can equivalently express (76) as (79) for all u ∈ R.

Combining all these cases, we obtain

c1∥u∥+c2u ≤ c3⇔


c2 ≥ 0 and c3 ≥ 0, (c1+c2)u ≤ c3
c2 ≤ 0 and c3 ≤ 0, (c1+c2)u ≤ c3
c2 ≥ 0 and c3 ≤ 0, (−c1+c2)u ≤ c3
c2 ≤ 0 and c3 ≥ 0, (−c1+c2)u ≤ c3.

Since the case distinction depends only on c2 and c3, we can
equivalently formulate it in a compact form through (77).
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