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The brain is one of the most complex dynamical systems known to exist. It is composed of
billions of interconnected neurons and involved in countless cognitive and physical functions. It
has been the holy grail of neuroscience for centuries to explain, at various levels of analysis, how
these functions arise from the brain’s complex and ever-changing structure. Computational model-
ing has long been a pillar in this quest for multi-level understanding. Furthermore, the complexity
that arises from the interplay between neuronal dynamics, multiple temporal and spatial scales,
and the intricate interconnection and rich topological structure observed in the brain makes the
use of system-theoretic techniques a natural choice to analyze and understand such computational
models. This approach has led to a growing number of recent works at the intersection of control
theory and neuroscience, see e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] for a small sample.

A wide variety of processes and phenomena in the brain have been studied through the use of
dynamical systems models. Visual processing [12, 13], voluntary movement [14, 15], and patho-
logical behavior due to disorders such as Parkinson’s or epilepsy [16, 17] are only a few examples.
Indeed, the wide range of functions and behaviors exhibited by the brain exceed that of any single
model. Nevertheless, generalizable, multipurpose models are increasing sought whose dynamics
are rich enough to describe multiple dynamical behaviors using a single model structure. In this
work we investigate one such model consistent with empirical descriptions of neural physiology,
the linear-threshold rate (LTR) dynamics, and illustrate its richness by using it to describe multiple
dynamical behaviors observed in the brain. Specifically, we consider the dynamical brain behav-
iors of goal-driven selective attention (GDSA), declarative memory, and epileptic seizure activity
(see “Examples of Neural Activities Through the Lens of Dynamical Systems” for an overview of
these applications). Each of these applications can be tackled from a dynamical systems perspec-
tive, a choice made due to their dependence on both the structure of the brain and the dynamics
occurring within it. For the purpose of fully exploring the rich behavior of the linear-threshold
model, the key point is that each of these applications can be associated with distinct dynamical
properties, illustrating the versatility of the linear-threshold model.

While these three applications are distinct functions of the brain, there does exist overlap be-
tween them. For example, GDSA is a key part of working memory in order to select relevant
information from internally stored representations [18, 19]. Meanwhile, epilepsy and memory are



tied in that during epileptic seizures the ability of the brain to both encode and retrieve memories
is inhibited [20, 21, 22]. As such, while individual models of each dynamical behavior are impor-
tant, the ability to use a single model that can show all three behaviors is desirable. In this work,
through an examination of a dynamical systems approach to GDSA, epileptic seizures, and declar-
ative memory we provide a review of the extensive properties of the linear-threshold dynamics,
covering topics such as stability, stabilizability, bifurcations, and oscillations.

Outline
The paper is organized as follows. We first discuss methods of modeling the brain, focusing on
firing rate models, leading to the derivation of the linear-threshold model. We also discuss the role
of feedback and feedforward control employed in the context of the brain. We then explore proper-
ties of the LTR dynamics in single networks through the modeling of selective attention, epilepsy,
and memory. We exploit the description of the dynamics as a piecewise-affine state-dependent
switched system to leverage system-theoretic tools in unveiling the relationship between the net-
work interconnection structure and its dynamical behavior. This leads to an examination of the
construction of interconnected brain networks and study their resulting properties, with a view on
the application to selective attention and epilepsy. For selective attention, we consider hierarchi-
cal and star-connected interconnected topologies and illustrate the role of feedback/feedforward
control in ensuring recruitment of task-relevant regions and inhibition of task-irrelevant regions.
For epilepsy, we consider interconnected excitatory-inhibitory pairs and describe conditions for
oscillations to emerge and spread throughout the resulting network of networks. We finish with a
discussion of additional properties of the dynamics and an outline of additional applications that
could be studied using the linear-threshold model.

Linear Threshold Rate Models
Computational modeling of the brain is particularly challenging due, in part, to the different scales
of information in which one can phrase and approach the problem. At the smallest level, or the
“microscale”, the brain is composed of billions of neurons whose dynamics can be measured at
the individual level through their electrical activity. At the opposite end of the spectrum, the
“macroscale”, the brain can be divided into large regions, each composed of tens of millions of
neurons with “activity” patterns recorded using modalities such as functional magnetic resonance
imaging (fMRI) or electroencephalography (EEG). Various levels also fall in-between the two ex-
tremes, often referred to as the “mesoscale”. Each scale is the host to different network structures,
elemental components, and connectivity patterns. This heterogeneity of spatial scales alone makes
it infeasible to study the brain and all its functions and emerging phenomena using a single com-
putational model.

Both microscale models, illustrating the voltage dynamics of individual neurons, and macroscale
models, showing aggregate connectivity between regions, have been the subject of much research
using computational models. Details on microscale models can be found in [23, 24, 25, 26]
and references therein. For macroscale models, we direct the reader to [27, 28] and references
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within. Interestingly, while the microscale dynamics at the neuronal level must be nonlinear, at
the macroscale this is not necessarily the case. Despite the frequent assumption that accurate brain
models must be nonlinear [29, 30], the recent comparison [27] of a large variety of linear and
nonlinear macroscopic models did not find any advantage in the latter.

In this work we are interested in discussing computational brain models at the mesoscale, de-
scribing the interaction between populations of neurons each having similar function and statistical
properties. Two main types of mesoscale models are local field potential models (LFPs) and fir-
ing rate models. LFP models are based upon measuring the electric potential in the extracellular
space around neuron populations, while firing rate models measure the average firing rate of all the
neurons within a population [26]. Both LFPs and firing rate models have been used extensively
for studying brain function [31, 32, 33] and, in their simplest forms, can be transformed into each
other through an affine transformation [34]. In this work, we study firing rate models, in particular
the linear-threshold rate model, and its application to multiple brain functions.

In addition to the spatial scale of information in the brain, there exist vast temporal differ-
ences between distributed neural processes. Each region/circuit in the brain operates on its own
timescale, that might be different to the timescales of other regions and circuits. As such, when
considering a model at any scale of spatial information, it is necessary to encode a timescale into
the model dynamics of each region, and examine the impact in the dynamical behavior of their
relative differences.

Regardless of the scale of the brain network model, they all have basic graph-theoretic elements
in common. A brain network is modeled as a collection of nodes, with nodes representing individ-
ual neurons, populations of neurons, or brain regions, depending on the scale of the model. Each
of these nodes has its own defining properties (e.g., consisting of excitatory or inhibitory neurons)
and they are connected to form a network structure as shown in Figure 1. Specific model aspects
(functional forms, parametric constraints, etc.) are then defined in accordance with the information
scale of the model. Our next section describes the particular assumptions made to describe firing
rate models. The reader familiar with these models can safely skip this discussion.

Firing Rate Models
In this section we outline the construction of firing rate models in the brain, as per [26, § 7]. At the
level of neurons, brain dynamics consist of a series of spikes, or action potentials, being transmitted
between neurons, see Figure 2. The spike train is transmitted from one neuron to another at a
synapse, and as such the two neurons are referred to as the pre-synaptic and post-synaptic neurons.
The sequence of spikes (both input and output signals) transmitted between neurons is defined by
a neural response function, ρ(t), modeled as an impulse train of the form ρ(t) =

∑
k δ(t − tk), with δ

denoting the Dirac delta function.
In many areas of the brain, the spike trains defined by the neural response function appear to

be highly random, and observations have little trial-to-trial reproducibility, which makes accurate
spike train models difficult to construct. Replacing the neural response function with the average
firing rate provides more trial-to-trial reproducibility (see Figure 2), along with providing some
other benefits. First, spiking models can only accurately predict spike trains sequences if all inputs
into a neuron are known. Given the complexity of the brain with billions of neurons, knowing this

3



is highly unlikely. Second, the probability of any two randomly selected neurons being connected
is low. Hence, the construction of a network model that has a high degree of connectivity while
maintaining this property requires using a large number of nodes. Therefore it is standard practice
to instead model a single node in a network model as the average response of a population of
neurons. This allows for a less sparse network model. When using spike trains, this practice
makes it difficult to describe what the average response of the population is. The use of firing rates
instead allows us to specify the average response simply as the average firing rate of the neurons
within the population.

We next briefly explain how the firing rate model is constructed. First, we determine how the
total synaptic input of a neuron depends on the firing rates of its pre-synaptic afferents. Consider
a pair of pre- and post-synaptic neurons, with firing rates given by xpre(t) and xpost(t). Then, the
firing rate of the pre-synaptic neuron generates the synaptic input into the post-synaptic neuron
in the form of an electrical current, denoted Ipost(t). Assuming the synapse has fast dynamics,
Ipost(t) is approximately proportional to xpre(t) with proportionality constant wpost,pre, where wpost,pre

is known as the synaptic weight. The pre-synaptic neuron is excitatory if wpost,pre > 0 and is
inhibitory if wpost,pre < 0. As such, an excitatory neuron increases the activity of its out-neighbors
while an inhibitory neuron decreases it. We note that excitation and inhibition is a property of
neurons, rather than synapses, so a neuron either excites or inhibits all of its out-neighbors, but
not a combination (this is known as Dale’s law). The synaptic current of a neuron that receives
multiple synaptic inputs follows a superposition law, with

Ipost(t) =
∑

j

wpost, jx j(t), (1)

where the sum is taken over the neurons providing inputs.
Next, we model how the firing rate of the post-synaptic neuron depends on the synaptic input

as xpost(t) = F(Ipost(t)), where F(·) is a nonlinear “activation” function. While a variety of functions
can be used for F, the most commonly used are sigmoidal and linear-threshold functions, shown in
Figure 3. Both functions are bounded below, as required for the interpretation that a negative firing
rate is physiologically impossible. In addition, they are both bounded above, which is relevant for
stabilizing the network against excessively high firing rates. Here, we consider a linear-threshold
activation function, giving xpost = [Ipost]m

0 , with m being the upper bound on the firing rate. The
resulting firing rate dynamics from this choice of activation function is

τẋpost(t) = −xpost + [Ipost(t)]m
0 , (2)

where τ is a timescale constant indicating a “lag” between the change in the synaptic input and the
change in the firing rate. For simplicity, we assume that Ipost(t) is measured in Hz, as such it has a
multiplicative constant converting it from the traditional current unit of amperes. In addition, this
makes the synaptic weights wpost, j dimensionless constants.

While this derivation of a firing rate model as described above uses individual neurons, it is
common to replace the individual neurons with populations of neurons with similar activation
patterns, resulting in a firing rate model at the mesoscale. In this case, the firing rates xpre and xpost

represent the average firing rate of the population of neurons. Finally, to move from the dynamics
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of a single pair of neurons (or populations of neurons) to the dynamics of a brain network, we take
the following steps. We consider a network with n nodes and let x ∈ �n represent the firing rates
of the nodes. Then, combining the synaptic weights wi, j into a matrix W and using (1) and (2), we
obtain the network linear-threshold dynamics

τẋ = −x + [Wx + d(t)]m
0 . (3)

The term d(t) is added to the synaptic input to model external inputs to the network, such as un-
modeled background activity, inputs from other parts of the brain or external sources, or non-zero
thresholds. We note that the vector of firing rate upper bounds m can be modeled as either finite
or infinite. While the finite model is biologically sensible, if one assumes that the activity of
the network does not approach the typical firing rate threshold, then using an infinite bound (and
therefore removing the upper threshold) can be convenient for network analysis.

Modeling Different Brain Regions
Since distinct functions involve different areas in the brain, it is important for models to accommo-
date different structures to describe multiple phenomena and behaviors. A majority of the literature
on brain networks studies the cortex and cortical networks [31, 35, 36, 37] due to its role in higher-
level processes in the brain, including memory and attention [38]. However, most cortical regions
have inputs from subcortical areas, including the thalamus, that play critical roles in the many
functions undertaken by the cortex [39], see “The Thalamus - More than a Relay Station” for
details.

Given the various functions in which distinct brain regions are involved, homogeneous mod-
eling of all brain regions can be overly simplistic. In order to account for the differences in re-
gional properties, we can impose restrictions at various levels, such as functional forms, hyper-
parameters, or parameters, on the sub-models used for different regions. In this work we assume a
homogeneous use of the firing rate model with a linear-threshold functional form as derived in (3),
and encode regional heterogeneity into the structure of the synaptic weight matrices making up
the sub-model corresponding to each region. The following is a description of the constraints we
impose on the models of cortical and thalamic regions, respectively.

The cortex is composed of a mix of excitatory and inhibitory neuron populations and, while
excitatory neurons significantly outnumber inhibitory neurons, both play important roles in the
transmission and processing of information [36]. As such, we allow our firing rate model for cor-
tical regions to be composed of populations of excitatory and inhibitory neurons with arbitrary
numbers and connectivity patterns. We only restrict synaptic weight matrices of cortical regions
such that outgoing connections from each population are all either excitatory or inhibitory. This is
reflected in the matrices such that each column has either nonnegative or nonpositive values [26].
Within the cortex different stimuli are processed in different areas and at different rates. Regions
closer to the sensory areas process information faster than those further away, creating distinct tem-
poral hierarchies for stimuli such as visual and auditory [40]. Within the model these hierarchies
are reflected by different neurons having different timescales, τ, which combined with the network
topology dictate the location of a neuron within the hierarchy.
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The thalamus connects with cortical regions through a series of parallel pathways, with most
thalamic nuclei projecting to a unique cortical population [41]. However, lateral connections within
the thalamus (including both excitatory and inhibitory populations, the latter of which lying pri-
marily in the thalamic reticular nucleus) construct the transthalamic pathways between cortical
regions that can lie in different places within a hierarchical structure in the cortex [39, 42]. Exper-
imental observations indicate that along these pathways one of the mechanisms through which the
thalamus and cortex interact is feedforward inhibition mediated by local interneurons [43, 44, 45].

In particular, these observations show that the cortex receives excitatory thalamic input but
is inhibited due to connections between the thalamic input and inhibitory interneurons both for
first-order sensory thalamic nuclei [46, 47, 48] and higher-order thalamic nuclei [45].

Given the complexity of thalamic structure, we make the following simplifying assumptions
towards its computational modeling. First, we model the thalamus as a single region within the
model that can project to any cortical population. With this assumption we are including multi-
ple nuclei within a single region and lateral connections between the thalamic nuclei are included
in the internal dynamics. Second, we model the projections (outgoing connections) of the thala-
mus onto the cortical regions as being strictly inhibitory, mimicking the above-cited experimental
observations of feedforward inhibition of the cortex by the thalamus while also simplifying the
model. We note that the connections back from the cortical regions to the thalamus are allowed to
be both excitatory and inhibitory. Finally, the internal dynamics of the thalamus are restricted only
such that each column has a nonpositive or nonnegative sign, similarly to the cortical regions.

Control of Brain Models
Brain models in general, and the simplified and tractable form of firing rate models in particular,
are natural pathways to the study of control mechanisms of and for the brain. Akin to engineered
systems, the types of control utilized in the brain can be (roughly) separated into feedback and
feedforward. Feedback control operates off of circuits where the populations providing the control
input are directly stimulated by the populations within the network. In these circuits, the magnitude
of the control input is directly dependent on the activity level in the network. On the other hand,
feedforward control is not dependent upon current activity levels within the network and is based
upon input received from populations of neurons that may be further from the network.

Feedback control is a mechanism based upon the interaction of two neuronal populations that
form a closed loop. While feedback exists across the brain, a large component of feedback control
occurs in local feedback loops. In the feedback circuit, the first population stimulates a second
“control” population, which in return stimulates the first population in order to control its dynam-
ics. As the “control” neuron population can be either excitatory or inhibitory, both excitatory or
inhibitory feedback control exists within the brain. However, despite the existence of more exci-
tatory than inhibitory neurons, the inhibitory neurons frequently exhibit higher firing rates and are
able to influence the firing rates of other neuronal populations more than excitatory populations
can, cf. [36]. As such, inhibitory feedback control is more common than excitatory feedback [49].
Figure 4(left) illustrates a standard inhibitory feedback loop.

Feedforward control is more often studied in the context of (potentially unidirectional) non-
local connections between neuronal populations. In the case of cortical populations, for instance,
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they receive afferents from subcortical nuclei (i.e., the thalamus) as well as cortical populations in
distant regions. These long-distance connections may not form clear feedback loops, but instead
provide a feedforward control input that can modify the dynamics of the receiving neuronal popu-
lation. While long-range connections in the brain are almost universally excitatory, they can indeed
induce feedforward inhibition by exciting inhibitory “interneurons” (neurons with only local out-
put connections), which in turn inhibit their downstream neuronal population. If this two-hop
inhibition is stronger than the direct excitatory afferent received by the downstream population, as
is commonly the case, a net feedforward inhibition would occur [49]. Figure 4(right) illustrates
the feedforward inhibition mechanism.

Analysis of Individual Brain Regions
As outlined in the prior section, at any scale the brain is composed of multiple regions. How-
ever, in order to understand the behavior of a model of the overall network, it is beneficial to start
by examining the function of the model in individual regions. In this section, we examine the
dynamical systems modeling of GDSA, epileptic seizure activity and declarative memory using
linear-threshold dynamics (only) of a single region. In the next section, we address more complex
scenarios involving networks of networks modeling the interconnection of multiple brain regions.
The applications considered here relate to three main properties of the linear-threshold rate dy-
namics: selective inhibition and recruitment in GDSA relates to stabilizability, epileptic seizure
activity relates to bifurcations, and our models of declarative memory are based on multistability
of neural dynamics.

We consider a brain region composed of n nodes, with each node representing a population of
either excitatory or inhibitory neurons, and governed according to the linear-threshold dynamics
in (3). The network structure, cf. Figure 1, is encoded by the synaptic weight matrix W. We
begin by formalizing the problem of selective inhibition and recruitment within the framework of
linear-threshold firing rate dynamics.

Goal-driven Selective Attention in a Single Brain Region
Selective inhibition and recruitment is the process of identifying task-irrelevant and task-relevant
stimuli, and suppressing the task-irrelevant ones while processing the task-relevant ones. Since
different stimuli are, to a first approximation, processed by distinct populations of neurons [50,
51, 52, 53] (a fact closely related to the sparseness of the neural code, see [54, 55]), this can
be rephrased as inhibiting the populations of neurons associated with the task-irrelevant stimuli
and recruiting the populations associated with task-relevant stimuli. As such, for the purpose
of considering GDSA from a model-based perspective, we partition both the state variables x ∈
�n and the synaptic weight matrix W based upon the task-irrelevant and task-relevant nodes, as
follows

x(t) =
[
x0(t)
x1(t)

]
W =

[
W00 W01

W10 W11

]
. (4)
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Then, inhibiting the task-irrelevant stimuli corresponds to driving x0 to 0, whereas processing
the task-relevant stimuli corresponds to driving x1 to a desired attractor x1

∗. While the ensuing
framework is generalizable to arbitrary attractors, for simplicity of exposition, in our treatment we
consider x1

∗ to be a desired equilibrium. Accordingly, we also partition the input d(t) from (3) as

d(t) = Bu(t) + d̃(t),

where

B =
[
B0

0

]
d̃(t) =

[
0

d̃1(t)

]
,

resulting in the dynamics

τ

[
ẋ0(t)
ẋ1(t)

]
= −

[
x0(t)
x1(t)

]
+

[[
W00 W01

W10 W11

] [
x0(t)
x1(t)

]
+

[
B0

0

]
u(t) +

[
0

d̃1(t)

]]m
0
. (5)

This decomposition allows us to separate the inhibition of the task-irrelevant populations from
the recruitment of the task-relevant populations. The term B0u(t) allows for the inhibition of the
task-irrelevant populations through either an external control source or connections with another
controlling neuron population. Meanwhile, the term d̃1(t) allows for the recruitment of the task-
relevant populations by representing the information pathways between different brain regions
along with any additional unmodeled activity impacting the equilibrium to which the task-relevant
components are recruited. Figure 5 illustrates the discussion above.

With these decompositions in place, the problem of selective inhibition and recruitment of the
network can now be formulated mathematically as follows: under what conditions on the network
structure can we find control u(t) such that the network dynamics are stabilizable to (0, x∗1)?

Stability of Linear-Threshold Networks as a Function of Interconnection Structure

The ability to achieve selective inhibition and recruitment depends on the stabilizability of the
network through feedforward and feedback control mechanisms. Understanding stabilizability, in
turn, requires understanding the stability properties of the dynamics, and how the interconnection
structure of the network affects it. Our ensuing discussion tackles this point.

For simplicity, we assume that the input term is constant, d(t) = d, before generalizing the
discussion to time-varying d(t) subsequently. The stability properties of the dynamics are closely
related to its network structure, which in the linear-threshold brain model is encoded into the
synaptic connectivity matrix W. As such, we introduce the following notions of matrix classes.

Definition 1. A matrix W ∈ �n×n is

• absolutely Schur stable if ρ(|W|) < 1 where ρ(·) is the spectral radius;

• totally L-stable (W ∈ L) if there exists P = P⊤ > 0 such that for all σ ∈ {0, 1}n

(−I +W⊤Σ)P + P(−I + ΣW) < 0,

where Σ = diag(σ);
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• totally Hurwitz (W ∈ H) if all its principal submatrices are Hurwitz;

• a P-matrix (W ∈ P) if all its principal minors are positive.

We note that these matrix classes are related to each other through a variety of inclusions, as
shown in Figure 6.

Using these matrix classes, we can provide conditions for both the existence and uniqueness of
equilibria (EUE) and global exponential stability (GES) of the dynamics

τẋ = −x + [Wx + d]m
0 .

In particular, following [6], the dynamics have a unique equilibrium point if and only if I−W ∈ P,
are locally asymptotically stable if and only if −I +W ∈ H , and are GES if W ∈ L. Further, [6]
conjectures that −I +W ∈ H is necessary and sufficient for GES. One challenge with using these
results, however, is that determining that matrices are P-matrices or totally Hurwitz is computa-
tionally challenging, especially as the scale of the network increases. As such, the inclusions in the
matrix classes from Figure 6 take on importance as they can be used to construct more conservative
conditions (such as the conditions based on the spectral radius and norm of W) for EUE and GES
that are computationally tractable.

Achieving Selective Inhibition and Recruitment through Feedforward and Feedback

Given the importance of feedforward and feedback control for the brain we consider achiev-
ing selective inhibition and recruitment using both mechanisms. Here, we characterize first each
mechanism separately and later discuss the advantages of the combinations thereof.

We begin by considering feedforward inhibition. In this case, the brain region under con-
sideration is being inhibited by a separate (not explicitly modeled here) brain region to an ac-
tivity/inactivity pattern of its choice through the control input u(t). Since the linear-threshold
activation function is unaffected by excessive inhibition due to its thresholding at zero, selective
inhibition through feedforward inhibition is possible by using a sufficiently strong inhibitory input.
Utilizing this we can formalize the following conditions for selective inhibition and recruitment.

Theorem 2. (Selective Inhibition and Recruitment through Feedforward Inhibition [6, The-
orem V.2]): Consider a brain region modeled with the linear-threshold dynamics in (5). Suppose
that dim(u(t)) ≥ dim(x0) and that range([W00 W01]) ⊆ range(B0). Then, for any constant d̃1, there
exists a constant feedforward control input u(t) = ū that stabilizes the dynamics to the unique equi-
librium of the form (0, x∗) if and only if W11 is such that the internal dynamics

τẋ1 = −x1 + [W11x1 + d̃1]m1

0

is GES to a unique equilibrium.

We discuss the interpretation of the conditions of this result at the end of the section, in parallel
with the feedback inhibition case. We note that in Theorem 2 the potential for selective inhibition
and recruitment is predicated on the stability of the uncontrolled portion of the dynamics. This
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illustrates that the properties required for selective inhibition and selective recruitment can be fully
separated. The ability for selective inhibition is based upon the dynamics for the task-irrelevant
nodes, while selective recruitment is based upon only the dynamics of the task-relevant nodes,
with no intersection. In a similar fashion, for selective inhibition and recruitment using feedback
inhibition, the conditions are dependent only upon the structure of the task-relevant component of
the synaptic weight matrix, and are given as follows.

Theorem 3. (Selective Inhibition and Recruitment through Feedback Inhibition [6, Theorem
V.3]): Consider a brain region modeled with linear-threshold dynamics in (5). Let the input u(t)
be given by the linear feedback u(t) = Kx(t), where K is a constant control gain and suppose
dim(u(t)) ≥ dim(x0). Further, assume that range([W00 W01]) ⊆ range(B0). Then, there almost
always exists a K such that

i) I − (W + BK) ∈ P if and only if I −W11 ∈ P;

ii) −I + (W + BK) ∈ H if and only if −I +W11 ∈ H;

iii) W + BK ∈ L if and only if W11 ∈ L;

iv) ρ(|W + BK|) < 1 if and only if ρ(|W11|) < 1;

v) ∥W + BK∥ < 1 if and only if ∥[W10 W11]∥ < 1.

The interpretation of each of the results in Theorem 3 is as follows. First, recalling that se-
lective inhibition and recruitment occurs when the system is stabilizable to a unique equilibrium
(0, x∗), Theorem 3i) guarantees the existence and uniqueness of the equilibrium x∗ for the task-
relevant components. However, this condition does not guarantee the equilibrium is stable, so it is
not sufficient for selective inhibition and recruitment. Theorem 3ii) then guarantees local asymp-
totic stability (and potentially GES) of the equilibrium point x∗. The remaining conditions utilize
the matrix inclusions given in Figure 6 to provide sufficient conditions for stabilizability of the
task-relevant conditions to the equilibrium x∗. Theorem 2iii) guarantees GES of the task-relevant
components of the dynamics to x∗, thus providing a sufficient condition, when combined with the
assumptions of the result, that selective inhibition and recruitment is achievable through stabiliza-
tion to (0, x∗). Condition iv) does not guarantee GES, as the matrix class ρ(| · |) < 1 is not a subset
of the class of L-stable matrices, but it is more computationally tractable and does guarantee lo-
cal asymptotic stability. Finally, Theorem 3v) is computationally tractable, and is sufficient for
guaranteeing GES of the equilibrium x∗, allowing for stabilizability to (0, x∗).

To conclude this section, we discuss the assumptions in Theorems 2 and 3. Both the feed-
forward and feedback case require an assumption on the relationship between the range of the
task-irrelevant component of the synaptic weight matrix and the task-irrelevant component of the
inhibitory control matrix B0. In both results, the purpose of this condition is to guarantee the ex-
istence of a control allowing the result to hold. In the feedforward inhibition result, it guarantees
the existence of the constant control u used to achieve inhibition, while in the feedback inhibition
result, it guarantees the existence of the matrix K. The second assumption is that the dimension of
the control is at least as large as the number of task-irrelevant nodes in the system. Intuitively, this
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result guarantees that the control can inhibit every task-irrelevant node in the system (it would not
be possible to achieve this if the dimension was smaller).

Epileptic Seizures through Bifurcations in a Single Brain Region
Epilepsy is a neurological disease characterized by chronic unprovoked seizures. While epilepsy
can be caused by many different factors and there are multiple types of seizures, seizures typically
correspond to a sudden change from healthy to unhealthy activity. As such, when studying epilepsy
from a dynamical systems perspective, the emergence of seizures can be modeled through bifurca-
tions in the model [56, 57]. In this section, we look at phrasing epileptic events using bifurcations
in the model of a single brain region. In particular, using linear-threshold dynamics (3), consider
an excitatory-inhibitory pair (i.e., here n = 2)

τẋ = −x + [Wx + u]m
0 , (6)

where the synaptic weight matrix W and input u are

W =
[
a −b
c −d

]
u =
[
u1

u2

]
, (7)

with a, b, c, d ∈ �>0 and u1, u2 ∈ �. Since we are studying a single region, we are considering
focal seizures, but in the following we will consider the idea of generalized seizures through the
spread of epileptic behavior across networks.

Electroencephalography (EEG) is one of the most commonly used tools for measuring and
viewing brain activity, particularly for the diagnosis and study of epilepsy. As such, when taking a
dynamical systems approach to studying epilepsy, it is common to assume that the activity (output)
of the dynamical system represents (abstracted and simplified) EEG signals [58]. During both
healthy and unhealthy activity a variety of behaviors appear in the EEG measurements. However,
a number of types of waveforms have been commonly observed during epileptic seizures [59].
These waveforms can then be used as a basis to approximate an EEG response. One can then
relate each of these waveform types to specific properties of a dynamical system being used to
model EEG signals [60]. The types of waveforms and the dynamical system properties we use to
model them are summarized as follows.

Remark 4. (Waveforms Observed in EEG Recordings): The following waveform types are
commonly observed in EEG signals, and we discuss them based on the seizure shown in Figure 7,
with regions divided based on the qualitative changes in behavior.

1. Background activity (S1 in Figure 7): This is characterized by low-amplitude fluctuations
or oscillations around a mean-centered steady state value. This activity generally lies in the
theta band (4 − 7 Hz) [60]. In terms of a dynamical systems representation we model the
background activity as the network having a equilibrium. In this case the model behavior
will stay in the area of the equilibrium, fluctuating based upon noise in the system [60].
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2. Epileptic Spiking (S2): These are isolated non-rhythmic spikes and are commonly observed
sporadically prior to seizures during otherwise healthy background activity [60]. In model-
ing these from a dynamical systems perspective, they appear when the system is multistable,
with one of the equilibria being the origin. The spikes then appear when the system activity
moves into the orbit of the non-zero equilibrium [61].

3. Irregular low amplitude oscillations (S3): These significantly higher frequency oscillations
than those seen in background activity, with a dominant frequency in the range of 20 −
40 Hz [60]. In the seizure shown in Figure 7 these appear at the onset of the seizure, with
the brain activity suddenly and significantly increasing in frequency from the background
activity and spikes seen in S1 and S2. We have two approaches to modeling this with a
dynamical system. First, as oscillations they can be modeled as limit cycles in the dynam-
ics [60]. The other option, due to the irregularity in the oscillations, is to model them as
the dynamics being multistable, with the irregular oscillations appearing as the movement
of the system between the orbits [61].

4. Quasi-sinusoidal oscillations and rhythmic spiking (S4): These are higher amplitde oscil-
lations that begin at a high frequency but slow down into a rhythmic spiking pattern. The
rhythmic spiking typically lies in the alpha band, with a dominant frequency near 10 Hz [60].
In Figure 7 these appear as the seizure develops, with the activity slowing down from the the
oscillations seen in S3. These are modeled using stable limit cycles in the dynamics [60].

5. Slow waves (S6): These are very low-frequency (1− 2.5 Hz [59]) high amplitude waves with
intermittent spikes that typically only appear during sleep, but are also observed in epileptic
patients both preceeding and following seizures [21]. We choose to model these using a
combination of an unstable equilibrium and a limit cycle, with the spikes appearing as the
system moves between these states [61].

With this relation between EEG waveforms and dynamical systems properties we can now
frame the problem of discussing seizures using bifurcations and linear-threshold dynamics. First,
what type of bifurcations can occur in the model (6) and what components of a seizure do they
correspond with? Second, under what structural conditions on W and input conditions on u can
EEG waveforms be achieved that qualitatively resemble what is observed during epileptic seizures?

Bifurcations in Linear-Threshold Rate Dynamics

In order to relate bifurcations in the LTR model of a brain network to the EEG activity preceding,
during, and following epileptic seizures, we first need to understand how and when bifurcations
occur in the dynamics. In this section we will explain both the types of bifurcations that occur in
LTR dynamics and structural conditions under which they occur. We begin with a closer look at
the structure of the LTR dynamics.

One of the benefits of the linear-threshold network model is that the nonlinearities in the model
are switched-linear. In particular, the dynamics form a piecewise-affine state-dependent switched
system, which allows for applying linear analysis within each switching region. Further, this form
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allows for an elegant characterization of bifurcations occurring in the network, as the qualitative
changes in behavior occur as network equilibria move across switching boundaries.

At each point in time, each node in the network can be in one of three states: inactive ((Wx +
u)i ≤ 0), linearly active ((Wx+u)i ∈ (0,mi)), or saturated ((Wx+u)i ≥ mi). Therefore at any point
in time the network state can be associated with a switching index σ = σ(x) ∈ {0, ℓ, s}n, where
0, ℓ, s correspond to a node being inactive, linearly active and saturated, respectively. The indices
then define the switching regions for the linear-threshold dynamics as follows

Ωσ =

x ∈ [0,m]
∣∣∣∣∣


(Wx + u)i ≤ 0 if σi = 0,
0 ≤ (Wx + u) ≤ mi if σi = ℓ,

(Wx + u)i ≥ mi if σi = s

 .
Within each switching region Ωσ, we have that [Wx + u]m

0 = Σ
ℓ(Wx + u) + Σsm, in which Σℓ

and Σs are diagonal matrices with Σℓii = 1 if σi = ℓ and Σs
ii = 1 if σi = s. Applying this to the

dynamics (6), we get the piecewise-affine form take the form

τẋ = (−I + ΣℓW)x + Σℓu + Σsm. (8)

With the piecewise-affine dynamics, each input d and switching region σ corresponds with a
unique equilibrium candidate x∗σ(d) given by

x∗σ = (I − ΣℓW)−1(Σℓu + Σsm).

In order to guarantee the equilibrium candidates are well-defined we require the assumption that
det(W) , 0 and det(−I + ΣℓW) , 0 for all σ ∈ {0, ℓ, s}2. However, this assumption is not a restric-
tion as the set of matrices not satisfying the assumption has measure zero [6]. Each equilibrium
candidate is then an equilibrium of the system if x∗σ actually belongs to Ωσ. It is of interest to note
that the switching regions Ωσ are dependent on both the system structure and input. As such, as
the input to the system varies the switching regions themselves are changing, which differs from
standard state-dependent switched systems. These changing regions result in the dynamics exhibit-
ing richer behavior but correspondingly complicates the analysis. With this form of the dynamics
in hand we are ready to discuss bifurcations in the linear-threshold dynamics for the purpose of
modeling seizures.

In the excitatory-inhibitory linear-threshold network (6), bifurcations arise due to the piecewise-
affine form of the network and are characterized as a function of the network input, u [61], which is
referred to as the bifurcation parameter. Bifurcations then have the opportunity to occur when equi-
librium candidates from multiple switching regions coincide for a given value of the bifurcation
parameter. Such bifurcations are formalized as follows.

Definition 5. (Bifurcations in Linear-Threshold Networks [61]): A bifurcation parameter u is
called a bifurcation candidate for the linear-threshold dynamics (6) if x∗σ1

(u) = x∗σ2
(u) for σ1 , σ2.

A boundary equilibrium bifurcation (BEB) occurs at a bifurcation candidate u if x∗σ1
(u) ∈ Ωσ1 and

x∗σ2
(u) ∈ Ωσ2 .
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Now, while we have determined when a bifurcation exists and occurs within the linear-threshold
network, there are multiple types of bifurcations. These correspond with different changes in dy-
namical behavior of the network, and as such can be related to transitions between different wave-
form types in the EEG. The types of BEBs are defined as follows.

Definition 6. (Types of Boundary Equilibrium Bifurcations [61]): If a boundary equilibrium
bifurcation occurs at input u it is called a

1. a persistent BEB (P-BEB) if the number of equilibria is constant in a neighborhood of u;

2. a non-smooth fold BEB (NSF-BEB) if the number of equilibria is not constant in a neighbor-
hood of u;

3. a Hopf bifurcation if it is locally a NSF-BEB such that a limit cycle emerges globally.

With these types of bifurcations in hand, we are now able to classify qualitative changes in
the behavior of the linear-threshold dynamics. However, to understand the dynamics, and to be
able to use it to model seizure behavior, it is desirable to have conditions such that each type of
bifurcations occur.

We will operate with only a single bifurcation parameter, rather than the two inputs that are part
of the model. That is, we will vary the parameter u1 to achieve bifurcations while maintaining u2 to
be a constant. This is called a codimension 1 bifurcation, and occur more frequently in biological
systems than higher-order bifurcations [62]. The following set of inequalities provide conditions
for the types of bifurcations in Definition 6 to occur.

Theorem 7. (Conditions for Boundary Equilibrium Bifurcations [61]): Consider an excitatory-
inhibitory pair governed by the linear-threshold dynamics (6) with synaptic weight matrix (7). Let
u be the input and assume that u2 is constant, while u1 is the bifurcation parameter. Suppose that

−m1c < u2 < (1 + d)m2.

The following inequalities result in four different bifurcation behaviors in the system:

a < 1, (9a)
(a − 1)(d + 1) < bc, (9b)

a < d + 2. (9c)

The bifurcation possibilities are as follows:

(A) If (9a) is satisfied, there exists a unique equilibrium for every input v and all bifurcations
are P-BEB.

(B) If (9a) and (9b) are not satisfied, then the system has either one or three equilibria. Any
bifurcations involving theΩℓℓ region and one other region are P-BEB. Any other bifurcations
are NSF-BEB.
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(C) If (9a) is not satisfied while (9b) and (9c) are, then bifurcation candidates involving Ω00 or
Ωss and one other region are P-BEB. Any other bifurcations are NSF-BEB.

(D) If (9b) is satisfied while (9a) and (9c) are not, then the bifurcations are the same as in case
(C) except a Hopf bifurcation occurs at uℓ000 and at uℓsss.

From this result we see that bifurcation behavior in linear-threshold networks is highly depen-
dent on the structure of the network in addition to the actual bifurcation parameter. As such, when
considering how to represent seizure behavior using the linear-threshold model it is important to
ensure that the specific network considered has a structure that permits the wide variety of behavior
observed in the EEG of epileptic patients.

Constructing Seizure Behavior with Linear-Threshold Bifurcations

In order to use bifurcations in the network to represent seizure behavior, we need to relate the
types of bifurcations given in Definition 6 with the EEG waveforms from Remark 4. This is
done by matching the dynamical systems properties of the EEG waveform types from [60] with
the properties of each bifurcation types. Table 1 proposes a relationship between the types of
bifurcations in the network and the types of waveforms that make up both healthy and epileptic
EEG behavior.

From Table 1, we can see that bifurcations in the excitatory-inhibitory network governed by
linear-threshold dynamics can result in all of the waveform types that appear in the EEG from
Remark 4. Note, however, that due to the structural constraints on bifurcation types provided in
Theorem 7, not all excitatory-inhibitory pairs exhibit the range of EEG behaviors discussed in
Remark 4, and as such are are not useful for exhibiting epileptic behavior. This allows, in at
least two ways, a realistic representation of modeling epileptic dynamics using LTR models. First,
it does not make sense for any arbitrarily constructed network to be a reasonable model for the
brain. As such the existence of structural requirements for a network to be able to exhibit specific
behavior is expected. Second, seizures generally begin in specific areas of the brain and then either
remain there (focal seizures) or spread throughout the brain (generalized seizures) [63]. This,
together with the fact that not all people exhibit epileptic symptoms further explains the existence
of specific structural conditions for the emergence of epileptic dynamics in the model.

We conclude this section with an example of using an excitatory-inhibitory pair governed by the
linear-threshold dynamics to replicate the seizure behavior seen in Figure 7 through bifurcations.
We will use the relations between bifurcation and waveform types from Table 1 to construct the
desired waveforms. We further extend the deterministic linear-threshold dynamics in (6) as follows

τẋ = −x + [Wx + v + w]m
0 . (10)

Here the input u is divided into components v and w, where w is a white noise input used to
simulate the noise content of EEG signals [64]. We construct the synaptic weight matrix W such
that the structural conditions of part (D) in Theorem 7 are satisfied. In Figure 8 we show how
the network exhibits each of the waveform types by moving through bifurcations by changing the
bifurcation parameter v1 + w1 while the input v2 + w2 is fixed at 0. Four main behaviors appear in
the network, corresponding with the regions seen in Figure 7.
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If the input to the network satisfies v1 + w1 < 0, the network has a stable equilibrium point
at zero which is corresponding to healthy background activity and is not shown in the plot. Ap-
proaching v1 + w1 > 0 is the first bifurcation as when v1 + w1 > 0 the system has a unique limit
cycle. This is a NSF-BEB bifurcation and results in the spikes shown in section S2 of the graph.
Further increasing the bifurcation parameter reaches a Hopf bifurcation and gives the small oscil-
lations in S3, and further increasing of the input results in the higher magnitude oscillations of S4
and S5. At the boundary of S5 and S6 we reach a second Hopf bifurcation to move from high am-
plitude oscillations to the slow waves seen in S6. Further increasing of the bifurcation parameter
would result in a NSF-BEB bifurcation that would result in a stable equilibrium point at the upper
threshold of the network and correspond to healthy activity.

Declarative Memory in Single Region Linear-Threshold Rate Models
Declarative memory is the process of encoding and storing data in the brain, while allowing for
the conscious retrieval of that data [65]. In early dynamical system representations of memory,
such as [66, 67], memories are encoded and saved as attractive equilibrium points, with retrieval
of the memory being represented by the system state reaching a particular equilibrium. As such,
the ability of a model to encode and retrieve multiple memories is dependent on the ability of the
model to admit multiple stable equilibria.

In this section we will model memory with a threshold-linear dynamical system, that is, the
linear-threshold model without an upper saturation bound. While the saturating linear-threshold
model (3) is a more accurate representation, the upcoming results are not readily generalizable
to the saturating model. For modeling memory, we utilize the idea of the support for defining
memories. For a state variable x ∈ �n, let the support of the vector be the subset of nodes with
non-zero activity, that is

supp(x) = {i ∈ {1, . . . , n} | xi , 0}.

We now provide a definition of a memory in this model.

Definition 8. (Memory): Consider a brain network composed of n nodes with symmetric synaptic
weight matrix W governed by the threshold-linear dynamics as follows

τẋ = −x + [Wx + d]∞0 . (11)

A set σ ⊆ {1, . . . , n} is a memory in the network if there exists an input d such that there is a stable
equilibrium point x∗ with supp(x∗) = σ.

The reason for using a memory as a set rather than as a single equilibrium point as in [66]
is input independence. Unlike the earlier models where equilibrium points remained the same
for small changes in the input, the equilibrium points of the threshold-linear model often change
with any change in the input. This is undesirable, as inputs are supposed to provide cues for
what memory should be invoked, rather than changing the memory itself. Using the support of
the vector instead of the equilibrium point provide the desired invariance under similar inputs, as
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there is always a small enough change in the input such that the support remains the same for the
resulting equilibrium point(s).

In what follows, we address two problems related to memory in this model. First, under what
conditions on the network structure W does the network admit the ability to encode multiple mem-
ories? Second, for a given set σ ⊆ {1, . . . , n} and network structure W, does there exist an input d
such that σ represents a memory that can be encoded and retrieved by the network?

Multiple Memories in Symmetric Threshold-Linear Networks

The ability of a network to encode multiple memories is directly related to the ability of the network
to admit multiple stable equilibria. In particular, a network must admit stable equilibrium points
with different supports in order to encode multiple memories. As such, we introduce the following
notion of permitted and forbidden sets to distinguish whether or not a memory can be encoded on
a given set.

Definition 9. (Permitted and Forbidden Sets [68]): Consider a brain network composed of n
nodes with symmetric synaptic weight matrix W governed by the threshold-linear dynamics (11). A
set of neurons σ ⊆ {1, . . . , n} is called permitted if for some input d there exists a stable equilibrium
point x∗ with supp(x∗) = σ. A set of neurons is called forbidden if it is not permitted.

From this, we have that a memory can only be encoded on a permitted set, and with memories
defined by Definition 8, it requires multiple distinct permitted sets to encode multiple memories.
Due to this requirement, the existence of multiple stable equilibria is not sufficient for the encoding
of multiple memories. This is since the equilibria could form a continuum lying only on a line or
surface, which have the same support, and as such are part of the same permitted set. In this case,
we can have a network with only one permitted set, and as such only one possible memory. In order
to have multiple permitted sets, and as such, memories, we introduce the property of conditional
multiattractiveness.

Definition 10. (Conditionally Multiattractive [68]): A network governed by the threshold-linear
dynamics (11) is conditionally multiattractive if there exists an input d such that the set of stable
equilibrium points is disconnected.

If a network is conditionally multiattractive, then we can guarantee the ability to encode mul-
tiple memories, as the disconnected stable equilibrium points will lie in distinct permitted sets. As
noted above, a network being multiattractive differs slightly from being multistable. In particular,
all multiattractive networks are multistable, but not all multistable networks are multiattractive, by
virtue of excluding line and surface attractors.

Before addressing conditions for multiattractiveness in threshold-linear dynamics we return to
addressing convergence to an equilibrium through network interconnection structure. We recall
that there exists a unique equilibrium point for each input if and only if I −W ∈ P [6]. However,
due to the desire for multiple in this section we desire a slightly more general condition. For this
we introduce the notion of copositivity.
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Definition 11. (Copositive [68]): A symmetric matrix W ∈ �n×n is called copositive if x⊤Wx > 0
for all x ∈ �n

≥0\{0}. An equivalent condition is that all positive eigenvectors of all submatrices of
W have positive eigenvalues.

With the definition of copositivity in hand, we are able to provide a condition guaranteeing con-
vergence to an equilibrium for threshold-linear networks with symmetric synaptic weight matrices
W. In particular, the symmetric threshold-linear network is guaranteed to converge to an equilib-
rium (which is dependent on the inputs and initial conditions) if and only if the matrix I −W is
copositive [68]. This condition is more general than the conditions provided for the matrix classes
in Figure 6, as the set of P-matrices is a subset of the copositive matrices. While the copositivity
condition provides a condition for convergence to an equilibrium, it does not guarantee the exis-
tence of multiattractiveness. The following result provides additional structural conditions on the
synaptic weight matrix to guarantee multiattractiveness.

Theorem 12. (Conditional Multiattractiveness in a Brain Network [68]): Consider a threshold-
linear brain network defined by symmetric synaptic weight matrix W. If I −W is copositive the
following statements are equivalent:

1. The matrix I −W is not positive semidefinite.

2. There exists a forbidden set.

3. The network is conditionally multiattractive.

This result can be interpreted as follows. The goal of the result is to provide conditions such
that the network is conditionally multiattractive, and as such can encode multiple memories. By
the first assumption in the result, that the matrix I −W is copositive, we are guaranteed that for all
inputs and initial conditions the dynamics converges to an equilibrium. From Theorem 12i) we get
that a negative eigenvalue, which prevents the equilibrium point corresponding to all neurons being
active from being stable, guaranteeing the forbidden set. This negative eigenvalue then allows for
guaranteeing the conditional multiattractiveness of the network, as it allows for the construction
of a separating hyperplane between stable equilibrium points guaranteed by the copositivity of
I −W, giving disconnected equilibrium points, and the ability to encode multiple memories in the
network.

We finish this section with a discussion of some of the additional assumptions we have added
in this section. First, we have used the non-saturating threshold-linear model rather than the linear-
threshold model. While being slightly less accurate, if it is assumed that the brain activity being
considered is not approaching the saturation threshold, then the two models (bounded and un-
bounded) become equivalent. The use of this model is due to the requirement of input indepen-
dence with memories defined in the manner of stable equilibrium points. If instead we used the
saturating model, then for any desired support we could construct a stable equilibrium by choos-
ing an input that is sufficiently large in the active neurons and sufficiently negative in the inactive
neurons to give an equilibrium point at the saturation threshold and zero. Since this is unrealistic,
it motivates the use of threshold-linear models. Second, we have made the assumption that the
synaptic weight matrix is symmetric, which then does not generally satisfy Dale’s Law (except in
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cases where all neuron populations are excitatory or inhibitory). This assumption simplifies the
analysis for multiple equilibrium points, but can prevent the existence of behavior such as oscilla-
tions [26]. However, under assumptions of a recurrently connected network and having fast-acting
inhibitory neurons, the symmetric model can typically be a valid approximation [68].

Permitted Memories in Threshold-Linear Networks

In the prior section we provided conditions such that a network has the ability to encode and
retrieve multiple memories. However, it is of interest to be able to determine whether the network
structure permits the encoding of a memory in a given set of nodes. As such we are interested in
determining if a given set of nodes is permitted or forbidden. The piecewise-affine nature of the
threshold-linear dynamics and the relation between permitted sets and stable equilibrium points
motivates the following result for determining if a set is permitted or forbidden.

Theorem 13. (Conditions for Permitted and Forbidden Sets [69]): Consider a threshold-linear
network (11) with synaptic weight matrix W. A set σ ⊆ {1, . . . , n} is permitted if and only if the
matrix (−I +W)σ, the principal submatrix corresponding with the indices in σ, is stable. Further,
the set σ is forbidden if and only if (−I +W)σ is unstable.

This result gives a simple test for whether or not a set of neurons allows for the encoding of
a memory. It follows from the fact that each possible memory (and hence support) corresponds
with an individual switching region in the threshold-linear dynamics. The existence of a stable
equilibrium point with that support can then be determined using the same conditions as for a
standard linear system, that is the stability of the synaptic weight matrix.

It is important to note that unlike the results in the prior section on multiattractiveness, this
result does not require the synaptic weight matrix to be symmetric nor I −W to be copositive.
However, due to these omissions, it does not directly apply with Theorem 12, in that the existence
of a forbidden set does not imply conditional multiattractiveness. If we do enforce those conditions
again we obtain the following result.

Corollary 14. (Set Operations on Permitted and Forbidden Sets [68]): Consider a threshold-
linear (11) brain network with symmetric synaptic weight matrix W such that I −W is copositive.
Then all subsets of permitted sets are permitted and all supersets of forbidden sets are forbidden.

This result gives a way to determine a variety of permitted and forbidden sets based off the
knowledge of just one permitted (or forbidden) set. In concert with Theorem 13, it makes it pos-
sible to determine many permitted or forbidden sets with minimal computations on the stability
of matrices. In particular, by determining small forbidden sets, which requires minimal computa-
tional power, node sets can be ruled out immediately when looking for larger permitted sets, which
requires more computational power due to considering larger matrices. The opposite use of this
result is that if a single permitted set is found, then a large number can be constructed using subsets
of the original set.
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We finish this section with an example of a network able to encode multiple memories. Con-
sider a threshold-linear brain network with four nodes and symmetric weight matrix W given by

W =


0.8 0.2 −0.5 0
0.2 0.3 −0.2 0
−0.5 −0.2 0.4 −0.4

0 0 −0.4 0.9

 . (12)

This matrix satisfies I −W copositive, while also satisfying that it is not positive semidefinite. As
such, by Theorem 12 there exists a forbidden set and the network can encode multiple memories. In
Figure 9 we show the network with two permitted and one forbidden set highlighted, as determined
by the conditions in Theorem 13. Using Corollary 14 we can determine that all subsets of {1, 2, 4}
are able to encode memories, while all supersets of {2, 3} are unable to encode memories.

Analysis of Interconnected Brain Regions
While studying the brain using models of individual brain regions can be useful, one of the defining
characteristics of the brain is its interconnected structure between regions that can have vastly
different properties. Almost all brain functions are based on the interaction and transmission of
information between different areas, with other actions performed through the transmission of
information into other parts of the nervous system. As such it is of interest to expand our study to
models composed of multiple brain regions. We maintain the model of linear-threshold firing rate
dynamics for each region and connect them to create larger networks of networks, as described
in “Construction of Multi-Region Brain Networks”. These networks can be formed with a variety
of different topologies which appear based on network location and application.

In this section, we will expand our treatment of both GDSA and epileptic seizures to inter-
connected brain networks. For GDSA we will consider two network topologies, hierarchical tha-
lamocortical networks and star-connected thalamocortical networks, and illustrate that selective
inhibition and recruitment can be achieved in the interconnected networks based on properties of
the linear-threshold dynamics. For modeling epileptic seizures, we will consider networks com-
posed of interconnected excitatory-inhibitory pairs, and examine how oscillations occur and spread
throughout the network governed by linear-threshold dynamics.

GDSA in Interconnected Brain Networks
Goal-driven selective attention occurs based on interactions and the transmission of information
between areas in the brain. Here, we expand our treatment of selective inhibition and recruitment
to networks composed of multiple brain regions. A key part of interconnected networks is that
brain regions are not necessarily homogeneous and, as such, it is important to consider types
with different characteristics. In particular, we consider networks composed of both cortical and
thalamic regions and, using the construction of interconnected linear-threshold brain networks
from “Construction of Multi-Region Brain Networks”, will examine the following topologies:
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• A hierarchical thalamocortical topology, as shown in Figure 10(a). In this topology, we con-
sider a series of cortical regions forming a hierarchy, where each region is connected only to
regions directly above and below. The thalamus is represented by a single region, composed
of multiple higher-order thalamic nuclei, which accepts inputs from cortical regions, be-
fore modulating them and transmitting the information back to other cortical regions. This
models transthalamic pathways that function parallel to the direct cortico-cortical connec-
tions [42]. By connecting to each cortical region in the hierarchy, this topology allows for
the indirect connection of any two cortical regions through the thalamus. Such a topology
has been implicated in higher-level brain functions, such as learning and decision-making,
where the thalamus supports the transfer of information across different areas of the pre-
frontal cortex [70].

• A star-connected thalamocortical topology, as shown in Figure 10(b). In this topology, the
thalamus node is a first-order thalamic nuclei, which transmits sensory or other information
from subcortical structures to cortical regions. Here the thalamus is operating mostly as
a relay. Such topologies arise in all sensory systems, with the exception of the olfactory
system. Examples of first-order thalamic nuclei that result in this topology are the ventral
posterior nucleus in the somatosensory system and the lateral geniculate nucleus in the visual
system [71, 72].

Achieving selective inhibition and recruitment is dependent on the stabilizability of the net-
work. When considering an interconnected network, the stabilizability of the overall network is
dependent on the network timescales and interconnections, in addition to the internal dynamics
of each region. As such, the results using direct feedback and feedforward inhibition in order to
achieve selective recruitment and inhibition, cf. Theorems 2 and 3, are not directly applicable.
However, properties of the linear-threshold dynamics can be used to show that selective inhibition
and recruitment is possible in the interconnected networks of both topologies, as discussed next.

Hierarchical Networks

The brain has been known to have a hierarchical organization for decades, both in terms of structure
and function [73, 74]. One of these hierarchies is based upon function, in which primary sensory
and motor areas are placed at the bottom of the hierarchy, while high-level processing areas such
as the prefrontal cortex lie at the top [75]. Sensory information is processed as it moves up the
hierarchy, while decisions are made at the top and information is then transmitted back down the
hierarchy to perform desired actions or shape sensory perception. It is in the top-down direction
of this hierarchy that GDSA occurs, where the higher-level layers instruct the lower layers as to
which information is relevant, thus requiring further processing for performing the desired actions,
and which information should be suppressed and prevented from further processing.

In addition to being sorted based upon the direction of information flow, a hierarchy of timescales
also exists between brain regions, which closely aligns with the former. In particular, as one moves
up the hierarchy, the regional dynamics become slower [76, 77, 40]. This separation of timescales
is important for the ability of the network to perform selective inhibition and recruitment. To
illustrate this, recall that the goal of GDSA is to have the activation level of the task-irrelevant
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components of the network converge to zero, while the activation level of the task-relevant com-
ponents converge to a desired (non-zero) steady-state pattern, e.g., an equilibrium x∗. In the case
of a network of networks, the determination of such equilibria at each layer is not trivial, as the
layer interconnection makes it dependent upon the inputs of layers higher in the hierarchy. The
timescale separation plays a key role in reasoning about such equilibria. This is because, for a
given layer, the state of the ones above it can be considered as constant (since they evolve on a
slower time scale), whereas the state of the ones below it can be described as a static nonlinear
function dependent upon the state of the current layer (since they evolve on a faster time scale).

Formally, one defines an equilibrium map, which we denote h1
i (·) (where the superindex 1 indi-

cates that this is for the task-relevant nodes), for each layer i. This map, given the inputs from the
higher layers in the network, returns the set of equilibria for network layer i. One can set the state
of the task-irrelevant nodes to zero (as this will be taken care of by selective inhibition) and shrink
the state of each layer to strictly include the task-relevant components. The equilibrium maps re-
quire a constant input representing the state of the layers higher in the network, whose existence
can be justified through the timescale separation between layers in the hierarchical network and
using singular perturbation theory. Under the assumption that the timescale separation is infinitely
large, and assuming global asymptotic stability of each layer, the state of a given layer appears
as a constant at the timescale of the lower layers in the hierarchy. Conversely, at the timescale of
layers above, the state of a lower layer becomes a static nonlinear function (i.e., the equilibrium
map) of the states of the higher layers of the hierarchy. Utilizing this, the equilibrium map takes
its inputs to be the state (modified through interconnection matrices) of any layers higher in the
network that are directly connected. In the hierarchical thalamocortical topology this is either one
or two inputs. The first input is the cortical layer directly above the considered layer. Then, if the
current layer is below the thalamus in the hierarchy, the state of the thalamus will also be an input
to the equilibrium map. We are then able to recursively define equilibrium maps from the bottom
layer up to the top of the hierarchy.

Utilizing these equilibrium maps, and the goal equilibrium they define for selective recruit-
ment, we next discuss conditions for achieving selective inhibition and recruitment in the corti-
cal and thalamocortical hierarchical networks. The hierarchical thalamocortical network, shown
in Figure 10(a), is composed of N cortical regions connected to the regions directly above and
below and one thalamic region connected to all of the cortical regions. In order to represent
the thalamus as a single region we assume that the relevant thalamic neurons have comparable
timescales. The regions form a temporal (and functional) hierarchy, encoded by timescales satis-
fying τ1 ≫ τ2 ≫ · · · ≫ τN . The thalamus region, forming parallel transthalamic pathways lies
in the same hierarchy. The exact position of the thalamus is dependent on the cortical regions in
the hierarchy, but it can lie at any point [78]. Without loss of generality we assume the thalamus
lies at a point in the middle of the hierarchy, with τa ≫ τT ≫ τa+1 for some a ∈ {1, . . . ,N}. The
results that follow remain valid if the thalamus is at an endpoint (top or bottom) of the hierarchy,
with slight changes in the resulting expressions. Using the linear-threshold firing rate model (3),
we obtain the following dynamics for the hierarchical network.

τiẋi = −xi + [Wi,ixi(t) +Wi,i−1xi−1(t) +Wi,i+1xi+1(t) +Wi,T xT + Biui(t) + ci)]
mi
0 , i ∈ {1, . . . ,N}
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τT ẋT = −xT + [WT xT +

N∑
i=1

WT,ixi + BT uT (t) + cT ]mT
0 .

(13)

From this dynamics we can define equilibrium maps for each layer in the cortical hierarchy, each
giving the set of possible equilibrium points as a function of the constant c. Note that these equi-
librium maps are for the task-relevant portion of the dynamics only and, as such, are not impacted
by the control input which acts only on the task-irrelevant components. Due to the interconnected
form of the dynamics, the maps are defined recursively, with expressions dependent on the location
of the region in the hierarchy. For the bottom layer of the network, the equilibrium map is defined
as

h1
N(c) = {x1

N | x
1
N = [W11

N,Nx1
N + c]m1

N
0 }. (14)

The equilibrium maps further up the hierarchy become notationally more complicated due to their
recursive nature, but all maintain the form

h1
i (c) = {x1

i | x
1
i = [W11

i,i x1
i +
∑

j=i+1,T

W11
i, jh

1
j(y) + c]m1

i
0 }, (15)

where, for an arbitrary layer i, the sum is over the layers below the current layer that are directly
connected, potentially including the thalamus. Here y is an input into the equilibrium maps below
layer i dependent on the state of the higher layers in the network. In these maps, the impact from the
layers higher in the hierarchy on the current layer’s equilibrium appear in the input term c, while
the impact from the lower networks comes from the appearance of the lower-level equilibrium
maps.

The equilibrium maps can be written in a switched-affine form, denoted by

h1
i (c) = Fλc + fλ

for switching regions λ, based on the piecewise-affine form of the linear-threshold dynamics (de-
tails on this form can be found in [7]). This representation of the equilibrium map gives rise to a
gain matrix F̄i, defined as the entry-wise maximum of the matrix |Fλ| over all switching regions.
These gain matrices are relevant to the results providing conditions for selective inhibition and
recruitment to be achieved in the interconnected network, as given next.

Theorem 15. (Selective Inhibition and Recruitment in Hierarchical Thalamocortical Net-
works): Consider a thalamocortical hierarchical network governed by a linear-threshold dynam-
ics and suppose subnetwork N1 has bounded trajectories. If

ρ(|W11
i,i | + |W

11
i,i+1|F̄i+1|W11

i+1,i|) < 1,

for layers below the thalamus,

ρ(|W11
i,i | + |W

11
i,i+1|F̄i+1|W11

i+1,i| + |W
11
i,T |F̄T |W11

T |) < 1,
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for layers above the thalamus, and

ρ(|W11
T +

N∑
i=a+1

|W11
T,i|F̄i|W11

i,i |) < 1,

then there exists Ki and ūi(t) such that using the feedback-feedforward control ui(t) = Kixi(t)+ūi(t),
for all i, gives

x0
i (t)→ 0 ∀i ∈ {2, . . . ,N,T }

x1
i (t)→ h1

i (W11
i,i−1x1

i−1(t) + c1
i ) for layers above the thalamus

x1
i (t)→ h1

i (W11
i,i−1x1

i−1(t) +W11
i,T x1

T (t) + c1
i ) for layers below the thalamus

x1
T (t)→ hT (

∑a
i=1 W11

T,ix
1
i (t) + cT ). for the thalamus

as the timescales satisfy τi
τi−1
→ 0 and τT

τa+1
→ 0 for all i ∈ {2, . . . ,N}.

This result can be interpreted as follows. The conditions involving the spectral radius at each
layer involve two components: the internal dynamics of layer Ni, and the impact of its inter-
connections with the next layer in the hierarchy (Ni+1) and the thalamus. Due to the timescale
separation between layers in the hierarchy, the connections from the next layer in the hierarchy
and the thalamus act as static nonlinearities due to their continual “instantaneous” convergence to
their respective (and moving) equilibrium points. Therefore, the sums combine the pathways that
Ni has to impact its state, and the spectral radius condition gives an upper bound on the combined
effects of these pathways. If the spectral radius conditions hold, reduced-order dynamics for the
task-relevant components in the network constructed by replacing connections from lower layers
in the hierarchy with their equilibrium values are GES [79, Lemma IV.2], which allows for the
convergence to the desired equilibrium for GDSA. The result x0

i (t) → 0 shows the task-irrelevant
components of the dynamics converging to zero, with the remaining terms give convergence to
a steady state, as expected. The control ui(t) used to achieve this convergence is a feedback-
feedforward control where each component plays a different role. The feedback term Kixi is used
to manage the impact of the layers of the network below layer i, while the feedforward term ūi(t)
controls the inputs from higher in the network and the term c0

i . Meanwhile, the value of the steady
state the task-relevant components converge to is dependent on the terms c1

1, . . . , c
1
N , c

1
T and the

interconnection between the network layers. In general it is difficult to specify values such that the
network converges to a specific steady state, but this problem has been approached with a reservoir
computing approach [80].

We now give some intuition on the remaining components of Theorem 15. First, the gain
matrices F̄i provide a worst-case bound on how much the equilibrium point of a layer Ni can
change based on one unit of change in the state of layer Ni−1. Due to this, its use in the spectral
radius conditions covering pathways for modifying system states makes the bound conservative.
Second, the condition τi/τi−1 → 0 corresponds to the timescale separation between the layers
becoming infinitely large. This separation, creating completely distinct timescales between each
layer, provides the base for being able to apply a generalized Tikhonov-style singular perturbation
argument [81] and establish the stabilizability of the hierarchical interconnected linear-threshold
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network. It is important to note that, while the result calls for an infinite timescale separation, in
brain pathways the ratios between successive layers can be on the order of 1/1.5 ∼ 1/2.5, which
we have empirically found to typically be sufficient for selectively inhibiting and recruiting the
system with a small degree of tracking error [7].

Finally, note that the conditions of Theorem 15 for the stabilizability of interconnected linear-
threshold networks, illustrated through the ability to achieve selective inhibition and recruitment,
depend only on matrices of size �ni×ni , where ni is the size of layer Ni. This corresponds with
the analysis of the result occurring at the level of individual regions with the infinite timescale
separation. The other method for analysis of the network is considering it as one large network with
finitely different timescales. Taking this approach then leads to determining if selective inhibition
and recruitment is possible through a calculation related to the full matrix of the network. In this
case, if selective inhibition is not possible, we are not able to pinpoint where the problem in the
network might be. As such it is preferable to take the approach of Theorem 15 as it provides
greater interpretability by being able to determine smaller regions of the network that result in not
being able to achieve selective inhibition and recruitment. In addition, in Theorem 15 we provide
conditions based on the spectral radius of relevant matrices, which is efficient to calculate but
conservative. In [79] more general conditions are provided which involve determining whether
matrices are L-matrices or totally Hurwitz. These conditions are much more difficult to confirm
for larger matrices, providing further incentive for the hierarchical approach used here.

Star-Connected Networks

A star-connected network, as shown in Figure 10(b), arises when we model the thalamus as a relay
center, as is common in the studies of sensory processing [42, 82, 83]. In this context, the thalamus
often receives an input signal from a subcortical area and sends outputs to one or more cortical
regions. In this simplified model, the cortical regions are not directly connected and, hence, their
timescale differences do not play an important role.

We model the (subcortical) region that provides the input to the thalamus with a linear-threshold
firing rate model in the same manner as the other regions in the network, except for an explicit
control term modeling the sensory input to the region and represented by a time-varying input
signal c1(t). Accordingly, we model the dynamics for a star-connected thalamocortical network
with N − 1 cortical regions as

τ1ẋ1 = −x1 + [W1,1x1 +W1,T xT + c1(t)]m1
0

τiẋi = −xi + [Wi,ixi +Wi,T xT + Biui + ci]
mi
0

τT ẋT = −xT + [WT xT +

N∑
i=1

WT,ixi + BT uT + cT ]mT
0 , (16)

where i ∈ {2, . . . ,N}, x1 denotes the state vector of the subcortical region providing sensory input
to the thalamus and the terms c2, . . . , cN , cT are unmodeled background activity that also shape the
desired steady-state convergence point.

Due to the lack of temporal hierarchy in this network topology, the singular perturbation
method used earlier for the hierarchical architectures no longer applies. First, with the lack of
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timescale separation, the equilibrium of the network is no longer determined through recursive
equilibrium maps and, instead, must be computed concurrently for all subnetworks. In particular,
the network equilibrium at time t is given by the solution to the following set of nonlinear equations

x1
1 = [W1,all

1,1 x1 +W1,all
1,T xT + c1

1(t)]m1
i

0 ,

x1
i = [W1,all

i,i xi +W1,all
i,T xT + c1

i ]m1
i

0 , i = 2, . . . ,N,

x1
T = [WT xT +

N∑
i=1

WT,ixi + c1
T ]m1

T
0 ,

where x0
i = 0 for all i ∈ {1, . . . ,N,T }.

For considering selective inhibition and recruitment in the star-connected topology, we instead
use results on the stability of slowly varying nonlinear systems. These rely on assuming that the
input signal to the subcortical region, c1(t), has a bounded-rate derivative (that is, there exists finite
α such that ∥ċ1(t)∥ < α). In addition, we allow for a slightly weaker notion of selective inhibition
and recruitment in which the convergence to zero and the equilibrium, respectively, is within a
constant ϵ. The following result provides conditions such that the thalamocortical network with a
star-connected topology can achieve this notion of selective inhibition and recruitment.

Theorem 16. Consider an N-layer star-connected thalamocortical network with N − 1 cortical
regions N2, . . . ,NN , thalamic layer NT and subcortical input layer N1. Suppose the following
hold for all values of ci ∈ �

ni , i ∈ {2, . . . ,N} and cT ∈ �
nT :

1. The input layer N1 has no nodes to be inhibited, ρ(W1,1|) < 1, and the input c1(t) lies in a
compact set and has a bounded rate derivative;

2. For each i ∈ {2, . . . ,N} ∪ {T }, the matrix W11
i,i satisfies ρ(|W11

i,i ) < αi, with αi < 1;

3. The matrix of task-relevant interconnections

W̄11 =



W1,1 0 . . . 0 W11
1,T

0 W11
2,2 . . . 0 W11

2,T
... . . .

. . .
...

...
0 0 . . . W11

N,N W11
N,T

W11
T,1 W11

T,2 . . . W11
T,N W11

T


,

with Schur decomposition1 W̄11 = Q⊤(DW̄11 +NW̄11)Q, is such α+max(δ, δ1/p) < 1, where p
is the dimension of NW̄11 and

α = max
i∈{2,...,N}∪{T }

{αi}, δ = γ

p−1∑
j=1

∥NW̄11∥ j

γ = max{
N−1∑
i=1

W11
i,t W11⊤

i,T ,

N−1∑
i=1

W11
T,iW

11⊤
T,i }

1For a matrix W we consider the Schur decomposition W = Q⊤(D + N)Q where Q is unitary, D is diagonal, and
N is upper triangular with a zero diagonal [84].
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Then there exist equilibrium maps x∗i (t) and ϵ > 0 such that

limt→∞ ∥x1(t) − x∗1(c1(t))∥ < ϵ (Selective Recruitment of Driving Layer)

and for all layers {Ni}
N
i=2 and NT ,

limt→∞ ∥x0
i (t)∥ < ϵ; (Selective Inhibition)

limt→∞ ∥x1
i (t) − x1∗

i (c1(t), . . . , cN , cT )∥ < ϵ (Selective Recruitment)

Further, if ∥ċ1(t)∥ → 0 as t → ∞ then ϵ = 0.

The result in Theorem 16 can be interpreted as follows: the star-connected network can achieve
selective inhibition and recruitment if each layer of the network dynamics is independently stable
and the magnitude of the thalamocortical and corticothalamic connections does not exceed a de-
termined stability margin. This bound on the magnitude of the corticothalamic feedback in the
network aligns with neuroscientific observations: it has been seen that enhanced corticothalamic
feedback can result in pathological behavior [41]. In particular, strong corticothalamic feedback
has been found to coincide with epileptic loss of consciousness in absence seizures due to over-
inhibition of the cortical regions [85]. Star-connected thalamocortical networks have also been
associated with other behavior seen in the brain, see for example “Remote Synchronization in
Star-Connected Thalamocortical Networks”.

Comparison of Selective Inhibition and Recruitment Across Interconnected Topologies

We have shown that the linear-threshold rate dynamics allow for the network to achieve selective
inhibition and recruitment in multiple interconnected network topologies. In the two topologies
considered, the thalamus serves significantly different roles: those of first order vs. higher order
nuclei [42]. This, in turn, results in different network properties across the two topologies, includ-
ing different conditions for achieving selective inhibition. In particular, the hierarchical network
is strongly dependent on the interconnection properties between the cortical regions, whereas the
star-connected network is more reliant on the internal dynamics of each layer.

However, a star-connected topology can also arise directly from the hierarchical thalamocorti-
cal network in the case of damage to the network. If the hierarchical thalamocortical network incurs
injury such that one or more of the information pathways between cortical regions are damaged,
the network topology becomes locally akin to the star topology of Figure 10(b). This possibility
underscores the importance of the transthalamic pathways between cortical regions and the ability
to achieve selective inhibition and recruitment in a star-connected network. Indeed, if we consider
a strictly cortical hierarchy as in [7], the removal of any information pathway would disconnect
the underlying chain-like topology. In the following example, we illustrate achieving selective in-
hibition and recruitment in a hierarchical thalamocortical network along with the star-connected
network formed by damage to the corticocortical connections.

We consider a hierarchical network composed of three cortical layers and one thalamic layer.
Each layer is composed of three neurons, with the top layer being purely excitatory and the tha-
lamus being purely inhibitory. The second layer is composed of two inhibitory nodes and one
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excitatory, while the third contains two excitatory and one inhibitory nodes. We drive the top layer
with an oscillatory input and aim to selectively inhibit and recruit nodes in the remaining three
layers. The parameters for the network are as follows.

W1 =

0.4461 0.1125 0.4637
0.1213 0.1750 0.0257
0.0648 0.1435 0.2963

 W2 =

0.4005 −0.3816 −0.3963
0.1165 −0.4132 −0.1645
0.4662 −0.2867 −0.1117


W21 =

0.1668 0.3416 0.4702
0.1148 0.4811 0.0029
0.4681 0.2190 0.3052

 W12 =

0.0814 −0.2511 −0.0235
0.4192 −0.4997 −0.1068
0.0838 −0.1777 −0.1989


WT,1 =

0.4782 0.1382 0.4817
0.2865 0.3112 0.0430
0.4249 0.2942 0.2502

 W32 =

0.4136 −0.2379 −0.4003
0.3379 −0.1995 −0.0525
0.1245 −0.2997 −0.4107


WT =

−0.3482 −0.4450 −0.0570
−0.2599 −0.1651 −0.1555
−0.0295 −0.1149 −0.1142

 W3 =

0.4205 0.2861 −0.3789
0.1773 0.3504 −0.1946
0.2150 0.3712 −0.2147


W1,T =

−0.1184 −0.4869 −0.4300
−0.3511 −0.4862 −0.2009
−0.1877 −0.3218 −0.3160

 W23 =

0.1562 0.1452 −0.3074
0.2923 0.2013 −0.4956
0.4150 0.4310 −0.1018


W2,T =

−0.4961 −0.4507 −0.0542
−0.2012 −0.4977 −0.0181
−0.3294 −0.3266 −0.3090

 WT,3 =

0.2228 0.1519 − 0.3992
0.4220 0.2416 − 0.4937
0.0981 0.1689 − 0.0795


WT,2 =

0.2608 −0.4422 −0.0742
0.0451 −0.2195 −0.3099
0.4523 −0.3909 −0.1303

 W3,T =

−0.2836 −0.3313 −0.4810
−0.4810 −0.2617 −0.2701
−0.3731 −0.1299 −0.0151


c1 = c2 = cT =

 0.5
1.25

2

 c3 =

 2
1.25

2


The threshold is set to be m = 10 and timescales are τ1 = 3, τ2 = 1.625, τ3 = 0.25, and τT = 1.
These parameters satisfy the conditions of Theorem 15 and in Figure 11 we show that we can
achieve selective inhibition and recruitment for the hierarchical network with the aim of inhibiting
one node in each of the layers other than the top layer. The remaining nodes are recruited to
oscillatory equilibrium trajectories based on the equilibrium maps (15). Note that they are non-
constant trajectories since we drive the top layer in an oscillatory manner.

We next consider the scenario where the corticocortical connections in the network are severed,
resulting in a star-connected network. Note that a hierarchy of timescales still remains between the
layers. In Figure 12, we see that we can still achieve selective inhibition and recruitment, but the
equilibrium trajectories to which the task-relevant nodes are recruited are different than the original
network. This is expected as the equilibrium maps are dependent on the interconnections between
the cortical regions, which are now all zero.
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This example illustrates that the linear-threshold dynamics are stabilizable in interconnected
networks with conditions dependent on the topologies of the network. This matches the fact that
different regions of the brain have different topologies but are still able to exhibit similar phenom-
ena.

Epilepsy in Interconnected Linear-Threshold Networks
We have already analyzed the emergence of epileptic seizures through bifurcations, representing
a sudden change from healthy to unhealthy dynamics, in the linear-threshold model for a single
brain region. However, more complex patterns emerge during an epileptic seizure when looking
at networks of multiple brain regions. One such pattern is the excessive synchrony of activity
between regions. Further, recalling from Remark 4 that different oscillatory waveforms in the
EEG are observed during seizures [86, 87], epileptic behavior can appear when there are extensive
synchronous oscillations throughout the brain [88]. It has been suggested that the broad spread
of synchronized pathological oscillations is a critical factor in generalized seizures [89], whereas
hyper-synchronized oscillations confined to a local brain area do not necessarily give rise to a
seizure [90]. In the following, we discuss epileptic behavior through the modeling of oscillation
spreading throughout an interconnected network of excitatory-inhibitory pairs in a synchronous
manner, following the exposition in [91]. We study excitatory-inhibitory pairs as they aresimple
but non-trivial networks that exhibit rich dynamical behavior, and allow for the construction of
large high-dimensional systems through the interconnection of many pairs. In this section we
consider coupled networks of E-I pairs which are defined by the interconnection of the dynamics
of individual E-I pairs, modeling information processing pathways between regions. We construct
a network of N coupled E-I pairs as follows. Each E-I pair has dynamics defined by synaptic
weight matrix Wi, input ui and threshold mi:

Wi =

[
ai −bi

ci −di

]
ui =

[
uE

i
uI

i

]
mi =

[
mE

i
mI

i

]
.

The coupling between E-I pairs i and j is then defined by weight matrix Wi j of the form

Wi j =

[
wEE

i j −wEI
i j

wIE
i j −wII

i j

]
.

The weights wEE
i j ,w

EI
i j ,w

IE
i j and wII

i j are nonnegative values that define the excitatory-excitatory,
excitatory-inhibitory, inhibitory-excitatory and inhibitory-inhibitory connections, respectively. Then,
the coupled E-I pair network has dynamics for the excitatory and inhibitory components of node i
given by

ẋE
i = −xE

i + [aixE
i − bixI

i +
∑
j,i

(wEE
i j xE

j + wEI
i j xI

j) + uE
i ]mE

i
0

ẋI
i = −xI

i + [cixE
i − dixI

i +
∑
j,i

(wIE
i j xE

j + wII
i j x

I
j) + uI

i ]
mI

i
0 . (17a)
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This notation for networks of coupled excitatory-inhibitory pairs will be used in studying oscilla-
tion spreading through these networks in the context of epilepsy.

As oscillations are a key part of the modeling of epileptic seizures in this approach, we first
discuss conditions such that oscillations appear in individual linear-threshold networks, before
considering their synchronization and spreading between interconnected regions.

Oscillations in Linear-Threshold Networks

Oscillations can arise in linear-threshold brain networks under a variety of conditions. Instead
of using perfectly periodic trajectories (as in a limit cycle) as the defining property of an oscil-
latory system, we use lack of stable equilibria. This choice is motivated by the hypotheses in
the Poincaré-Bendixson theorem [92] for establishing the existence of limit cycles in planar sys-
tems, but (1) relaxes the (unrealistic) need for exact periodicity and allows for chaotic oscillations
that better match biological neural oscillations, and (2) opens the door to theoretical analyses in
higher-dimensional systems. As such, we put forth the following definition of oscillatory behavior.

Definition 17. (Oscillatory and Inactive Nodes [91]): Consider a linear-threshold network (3)
composed of n nodes. We say that the ith node of the system is oscillatory if for all solutions of
network dynamics, xi(t) does not converge to a constant value as t → ∞. Furthermore, a non-
oscillatory node is said to be inactive if for all network solutions, xi(t)→ 0 as t → ∞.

As noted earlier, we are interested in the spreading of oscillations in networks of interconnected
excitatory-inhibitory pairs. This begins by investigating the appearance of oscillations in an indi-
vidual excitatory-inhibitory pair. For that, consider the linear-threshold dynamics (3) with constant
input u(t) = u for all t ∈ � and synaptic weight matrix

W =
[
a −b
c −d

]
,

where a, b, c, d ∈ �≥0. The existence of oscillations (which coincide with limit cycles in this 2D
system) can be analytically characterized as follows.

Theorem 18. (Oscillations in Excitatory-Inhibitory Pairs [93]): Consider an excitatory-inhibitory
pair governed by the linear-threshold dynamics (3). All network trajectories (except those with an
initial condition at an unstable equilibrium) converge to a limit cycle if and only if

d + 2 < a, (18a)
(a − 1)(d + 1) < bc, (18b)

(a − 1)m1 < bm2, (18c)
0 < u1 < bm2 − (a − 1)m1, (18d)

0 < (d + 1)u1 − bu2 < [bc − (a − 1)(d + 1)]m1. (18e)

These necessary and sufficient conditions for limit cycles in E-I pairs are the basis for the
analysis of the spreading of synchronous oscillations throughout a network of interconnected pairs
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in upcoming sections. We note that conditions for oscillations have also been characterized for
linear-threshold networks with a variety of other structures, a discussion of which can be found
in“ [”. In the following we discuss the spreading of oscillations in relation to epileptic seizures
utilizing E-I pairs and Theorem 18. The exact characterization of oscillations in E-I pairs allows
for a more complete analysis of the interconnected networks than if we instead used more general
topologies.

Spreading Oscillations and Large-Scale Synchrony

As generalized seizures occur with synchronous oscillations across multiple brain regions [94], we
wish to understand parameters such that oscillations occur in interconnected networks as defined
by (17). While Theorem 18 provides conditions such that we have oscillations in a single region,
in an interconnected network, even if these conditions are satisfied for each pair, the nodes in
that region may no longer oscillate. Conversely, it could also be the case that that a node that in
an individual network would not be oscillating may oscillate in the interconnected network. For
instance, Figure 13 shows a network of two E-I pairs governed by the linear-threshold dynamics
with synaptic weight matrices and controls

W1 =

[
4 −6
5 −1

]
W2 =

[
5 −8
3 −2

]
u1 =

[
1
−1

]
u2 =

[
1
0

]
,

with a threshold value of m = 2. Both of these networks individually satisfy the conditions of
Theorem 18 and oscillate per se, see the first 15s in the plots of Figure 13. However, after inter-
connecting them via their excitatory nodes with interconnection matrices

W12 =W21 =

[
3 0
0 0

]
,

the oscillations in the network stop, as displayed in the last 15s in the plots of Figure 13.
Figure 14 illustrates the opposite phenomena, whereby upon the interconnection of excitatory-

inhibitory pairs, nodes that were not oscillating can begin to oscillate. Here we consider a network
composed of three pairs, defined by the following synaptic weight matrices and controls

W1 =

[
4 −6
5 −1

]
W2 =

[
1 −5
4 −2

]
W3 =

[
3 −4
3 −2

]
u1 =

[
2
−2

]
u2 =

[
0
0

]
u3 =

[
0
−1

]
,

and a threshold value of 2. The first pair, governed by W1 oscillates on its own as per the conditions
of Theorem 18, while the other two do not. In Figure 14 we show first the unconnected networks,
before connecting pairs 1 and 2 and finish by connecting pair 3 to the network using the following
interconnection matrices, where Wi j defines the connections from pair j to pair i.

W12 =

[
2 0
0 0

]
W21 =

[
2 0
0 0

]
W13 =

[
2 0
0 −1

]
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W31 =

[
2 0
0 0

]
W23 =

[
0 0
0 0

]
W32 =

[
2 0
0 0

]
We are able to see that pair 1 maintains its oscillations throughout the interconnections, while

both of the other pairs move from non-oscillating to oscillating after connecting, despite not satis-
fying the conditions of Theorem 18. This example illustrates the ability of the network to spread
(putatively pathological) oscillations. We are thus interested in determining properties of the indi-
vidual regions that allow for maintaining either the oscillatory or inactive behavior upon intercon-
nection of regions. In order to do so, we condense the interconnection terms in the dynamics (17)
to the following,

ũE
i (x) = uE

i +
∑
j,i

(wEE
i j xE

j − wEI
i j xI

j)

ũI
i (x) = uI

i +
∑
j,i

(wIE
i j xE

j − wII
i j x

I
j). (19)

This compiles the interconnections between the E-I pairs into one input term in the network, pro-
viding a similar form to that of an individual uncoupled E-I pair. Using this change of variables and
combining it with Theorem 18, we can provide sufficient conditions for inactivity and oscillations
to be maintained upon network interconnections.

Theorem 19. (Robust Behaviors in Coupled Networks [91]): Consider a network of N coupled
E-I pairs defined by (17) and define the following set

Ui = {(uE
i , u

I
i ) | (18) are satisfied}.

If for all x [
ũE

i (x)
ũI

i (x)

]
∈ Ui,

then the ith pair in the network will oscillate after coupling. If, instead

uE
i +
∑
j,i

wEE
i j mE

j ≤ 0,

uI
i +
∑
j,i

wIE
i j mE

j ≤ 0,

the ith pair in the network does not oscillate after the network is connected.

These results provide an analytical basis for determining when E-I pairs will either be inactive
or oscillate following their interconnection. Some remarks are then in order. First, we note that
both results are sufficient results and, as such, both the loss and spreading of oscillations can occur
without them being satisfied. Second, while these results provide conditions such that oscilla-
tions or inactivity can be maintained in the event of interconnections, they do not directly provide
conditions for the spreading or loss of oscillations following interconnections. In fact, they only
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determine if there will be no change after interconnection, rather than providing conditions on the
networks such that oscillations will spread or stop. Determining direct conditions on the network
parameters so that oscillations spread or disappear in a network (as shown in the prior examples)
is an open problem. The work in [91] examines how the spread of oscillations throughout the
network can be controlled through the modification of network weights, instead of restricting the
properties of the original network itself.

These results and examples have illustrated that a network of couple E-I pairs with the linear-
threshold dynamics can exhibit a variety of oscillatory behavior. In particular, individual networks
can exhibit limit cycles and, through interconnections, these oscillations can both spread through-
out the network or stop altogether. As generalized seizures are related to the spread of oscillations
between brain regions [90], these properties make the linear-threshold dynamics a good model for
the estimation and control of this dynamical behavior.

Discussion and Open Avenues
In the prior sections, we have discussed a variety of properties of the linear-threshold network dy-
namics and illustrated their relevance in modeling brain behavior. This has provided an extensive
look at their use in particular applications. We believe there are further dynamical properties and
control mechanisms that should be studied, both in their own right, without relation to a specific
brain function, as well as for exploring other avenues for using linear-threshold networks in mod-
eling the brain. Here we provide a discussion on oscillatory properties of the dynamics with dif-
ferent topologies, paying special attention to the characterization of interconnections that explain
observed behavior in neuronal populations, and on the potential for systems and control to inform
targeted interventions that leverage the anatomical wiring structure and explain the mechanisms
behind dynamic dimensionality control and spatial computing in the brain.

Oscillatory Behavior in the Brain
When observing brain networks, oscillations are omnipresent and have significant ranges in both
magnitude and frequency [95]. In this work we have discussed oscillations in the context of epilep-
tic seizures and saw the appearance of oscillations in EEG measurements in Figure 7. However,
oscillations have been linked with a large number of different cognitive tasks, such as information
processing [96] and spatial cognition [97]. In our treatment of oscillations we limited the network
topologies to individual and coupled E-I pairs. However, for the purposes of properly understand-
ing the oscillatory properties of the linear-threshold dynamics and applying the model to other
appearances of oscillations in the brain, it is important to consider other structures. We do this
next.

Oscillations in Linear-Threshold Dynamics

In considering oscillations in linear-threshold dynamics, we recall that due to the difficulties of
their exact characterization in networks of dimension greater than two, we use the proxy of lack of
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stable equilibria for oscillations. Indeed, using this proxy, one can show for a variety of network
architectures that the linear-threshold dynamics admits oscillatory behavior of different forms, in-
cluding limit cycles, quasi-periodicity, and chaos. In what follows we give a summary of oscilla-
tory behavior in three different network architectures. We note that these network architectures do
not necessarily satisfy Dale’s Law, but under various assumptions can still be used as models for a
brain network:

• Competitive Networks are characterized by having their weight matrix be a Z-matrix, i.e., one
in which all off-diagonal elements are non-positive. Such networks have been studied both
for the linear-threshold dynamics [98] and the unbounded threshold-linear dynamics [99].
The existence of oscillations for such networks have been classified using multiple tools:
for linear-threshold dynamics, the appearance of oscillations with specific support (i.e., set
of oscillating nodes) has been shown through properties of Z-matrices and subsets of the
network [98]; for threshold-linear dynamics, the lack of existence of stable equilibria is
established through graph-theoretic methods [99].

• Combinatorial Networks are a special type of competitive network in which the weight ma-
trix W = {wi j}i, j∈{1,...,n} is defined by the connections in the network and two parameters ϵ, δ
as follows:

wi j =


0 i = j,
−1 + ϵ if there is a connection from node j to node i,
−1 + δ if there is no connection from node j to node i,

where 0 < ϵ < 1 and δ > 0. Oscillations in such networks have been studied extensively
for the threshold-linear dynamics [100]. In a similar fashion to the standard competitive
networks, in [99] it is shown that oscillations can occur in the combinatorial threshold-linear
network (CTLN), and can be constructed such that a variety of behaviors occur. Figure 15
shows that with varying network structures, limit cycles, chaos, and quasi-periodic orbits
can occur. Beyond having the existence of such behavior, in [100] conditions are given
that predict the number and type of both dynamic and static attractors based on analysis of
sources and sinks in the graph corresponding with the network structure.

• Coupled Networks are those composed of a set of networks of a similar form coupled to-
gether with additional connections, such as the coupled E-I pairs (17). The oscillatory behav-
ior of such networks can have a variety of properties. In particular, for the linear-threshold
dynamics on a coupled network, in [101] three different properties of the oscillations are an-
alyzed: regularity, synchronization, and phase-amplitude coupling. Using frequency domain
techniques, a regularity index is defined with a value of 1 corresponding with no oscillations
and ∞ equal to perfectly regular oscillations. As the interconnection strength increases, the
regularity of the oscillations reduces and the dynamics exhibit more chaotic behavior be-
fore reaching a point which guarantees a stable equilibrium. Additionally, as the number of
coupled oscillators increases, the behavior of the oscillations becomes increasingly chaotic.
Figure 16 shows that, when using the Maximal Lyapunov Exponent (MLE) as a proxy for
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chaos, as both interconnection strength and the size of the network increases. the MLE
increases until reaching the point at which stable equilibria appear and oscillations disap-
pear. It is also shown in [101] that synchronization and phase-amplitude coupling in coupled
networks increases with the interconnection strength between network components.

For further information we direct the interested reader to the above references along with [93]
and the references therein.

Communication through Coherence (CTC)

We start our discussion of future avenues for the application of the linear-threshold dynamics to
studying brain functions by examining communication through coherence. Communication in the
brain fundamentally relies on the transmission of the response of one neuron to the inputs arriv-
ing from another through the network [102]. When observing two brain regions, each exhibiting
oscillatory behavior, that are communicating, it is common that the regions exhibit a level of syn-
chronization. Communication through coherence is the idea that there exists an optimal level of
synchrony, seen through the phase difference or a coherence metric, that maximizes the communi-
cation between the regions.

Due to the extensive connectivity in the brain, each region receives inputs from multiple other
regions, and the CTC hypothesis provides a method to selectively process a single input at a
time [103]. Within the variety of oscillatory inputs arriving, the communication from one input
will exhibit a level of synchrony closer to the optimal phase difference for CTC. This input will
then communicate with the brain region to a higher degree than the competing inputs and will cre-
ate a response related to that stimulus. In this way, one input will be managed at a time, dictated by
which input has the optimal phase difference with the activity of the region under consideration.

It has been hypothesized that the optimal phase difference for CTC is the same as the stable
phase difference, that is, the phase shift that two oscillators naturally converge to in the steady
state [104]. In order to numerically study CTC, it is then required to be able to compute the
stable phase difference, which requires accurate knowledge of the underlying system, particularly
in the case of the network generating non-sinusoidal waveforms. As accurate knowledge of the
brain network is generally unavailable, which is exacerbated by the appearance of non-sinusoidal
waveforms, it is desirable to be able to provide a characterization of the stable phase shift in a
model-free fashion.

As a complementary avenue to existing spiking models that have been used to study CTC [103,
105], the ability of the linear-threshold network to generate oscillations, both in individual and
coupled networks [101, 93], has made it an attractive option for numerically studying CTC through
the determination of the stable phase shift. [104] provides a preliminary analysis of CTC using the
linear-threshold dynamics through an analysis of the stable phase shift for coupled E-I oscillators.
An extended study of CTC using the linear-threshold dynamics over varying network topologies
and properties, however, remains an avenue for future work.
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Working Memory and Spatial Computing

Working memory (WM) is a model for the short-term storage and control, in a top-down fashion,
of a small number of items [106]. Representations of items can selectively be encoded into, main-
tained in, and deleted from WM and then manipulated for the purpose of tasks such as reasoning
and decision making.

WM has been associated with oscillations in the brain and the relation between types of os-
cillations in different regions. In particular, WM has been suggested to rely on coupling between
beta oscillations (those with a frequency between 12 and 30 Hz) and gamma oscillations (those
with frequency between 30 and 100 Hz) [107]. In this model, gamma activity corresponds with
spiking that encodes and maintains information in working memory, while top-down information
is encoded in beta activity which inhibits gamma oscillations and thus controls access to the rep-
resented information in WM [108]. Through this, when information is being encoded into WM,
the beta activity decreases and high gamma activity is observed. While information is deleted, the
opposite relation appears. Note also that this interplay between beta and gamma oscillations is
interestingly similar to that during selective attention, where the attentional state follows a (theta-
frequency) rhythmic switch between a ‘sampling’ state and a ‘shifting’ state [109]. The sampling
state involves increased beta oscillations in the frontal eye field (FEF, a motor processing area) and
gamma activity in the lateral intraparietal cortex (LIP, a sensory processing area) linked to attention
suppression and sensory enhancement, respectively. During the shifting state, in contrast, both os-
cillations are suppressed, leading to reduced visual processing before an attentional shift. Various
other similarities and shared mechanisms have also been suggested between working memory (as
internal attention) and (external) selective attention, see, e.g., [110, 18, 111, 112].

However, as with any model, this relationship between gamma and beta waves does not fully
explain the neural mechanisms underlying WM. In particular, the anti-correlated increases and
decreases in gamma and beta behavior provides an ‘on-off’ concept for WM [108]. However,
with the oscillations representing large populations of neurons, this model is unable to explain
how individual item representations are manipulated. One such hypothesis for how WM encodes
such information is called ‘spatial computing’. In this setup, the gamma-beta interaction is used
to encode representations, while the spatial movement of this activity across a cortical network is
used for the purpose of manipulating the information to the relevant task [113].

The variety of oscillatory behavior illustrated by the linear-threshold dynamics provides an
avenue to model the gamma-beta interactions in WM. In addition, the fact that oscillations can
spread through linear-threshold networks and the availability of analytical tools to characterize
when and how, provides an opportunity to quantitatively model spatial computing.

Linear-Threshold Dynamics with Network Plasticity
Throughout this work we have discussed using the linear-threshold dynamics as a model for the
brain and studied properties of the dynamics for a given synaptic weight matrix. However, the brain
is plastic [114, 115, 116] and the connections between neurons can both increase and decrease in
magnitude, resulting in a changing synaptic weight matrix. A related, but distinct process that also
occurs in the brain is neurogenesis, namely, the generation of new neurons in the brain, resulting
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in networks with additional (at the macroscale) or modified (at the mesoscale) nodes [117].
Both of these processes and their associated brain functions can be studied through the lens

of linear-threshold dynamics with a synaptic weight matrix that is itself dynamic. One particu-
lar function related to both neuroplasticity and neurogenesis is memory [118, 119, 69, 120, 121].
We modeled declarative memory using the threshold-linear dynamics, with memories being repre-
sented by a set of nodes that permit a stable equilibrium point. With the basis for memory repre-
sentation using the threshold-linear dynamics in place, this opens itself for extension to covering
the concept of neuroplasticity and neurogenesis on memory. The work [69] encodes memories
in ‘flexible’ networks, which are those where the synaptic weight matrix can be perturbed by a
small amount. This correlates with the concept of neuroplasticity and investigating neurogenesis
in memory models through the threshold-linear dynamics, which forms an interesting avenue for
future work.

Controller Synthesis in Linear-Threshold Networks
In both the single and multi-region networks considered in this work, we consider the convergence
of the dynamics to either constant equilibria or trajectories with varying forms. The convergence
of the network to specific trajectories is important for a variety of problems, including goal-driven
selective attention, or memory recall. However, determining conditions and control inputs such
that the network converges to a specific non-zero equilibrium or trajectory is difficult. When using
a hierarchical approach, the values of the trajectory are given by recursively defined signals, and
choosing parameters to set these maps to specific values is unrealistic, especially for large systems.
On the other hand, if considering the network as a whole, it can be difficult to fully understand
stability and stabilization issues, and the choice of parameters might not be particularly robust.

Further, an issue that arises in both approaches is that frequently the synaptic weight matrix is
not known, or only is known as a (potentially poor) estimate. Machine learning methods can be of
use in approaching the synthesis of controllers that make the network converge to explicit trajec-
tories. These methods can be used both to provide a model of how the brain functions internally
(such as how specific signals are achieved in selective attention or memory recall), or to determine
a method for external modulation of the brain to achieve desired activity (such as deep brain stim-
ulation). One such approach that has been used in this context is reservoir computing [122, 123]
due to its origins in computational neuroscience, with specific applications to linear-threshold net-
works considered in [80]. There are many interesting avenues for future research in the area of
determining explicit signals with machine learning, such as comparing the use of different learning
models and methods.

Conclusions
The development of computational models with sufficient biological realism and mathematical
tractability is one of the key goals in computational neuroscience. In this work, we have investi-
gated one such model at the mesoscale, the linear-threshold rate dynamics. Due to the wide array
of functions the brain performs, any model of the brain that aims to cover multiple applications
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must exhibit a rich suite of behaviors. Through discussions of a variety of behaviors exhibited by
the brain, we have shown the linear-threshold dynamics to be a rich and versatile model.

Through modeling of GDSA in both single and interconnected networks of different topologies,
we showed the linear-threshold dynamics are stabilizable through simultaneous selective inhibition
of task-irrelevant nodes and selective recruitment of task-relevant ones. Using a model of declara-
tive memory as sets of neurons that can be the support sets of stable equilibria, we illustrated that
the unbounded version of the linear-threshold dynamics can permit multiple stable equilibrium
points and are conditionally multiattractive. In addition, we illustrated that the dynamics admit
both bifurcations and oscillatory behavior in E-I pairs, two dynamical properties that occur during
epileptic seizures.

We finished by extending the discussion of oscillations beyond the E-I pair network structure
and discussing additional dynamical brain processes such as communication through coherence
and spatial computing. While this is neither a comprehensive list of all properties of the linear-
threshold dynamics nor a complete collection of brain functions it could be used on, this work
highlights the rich behavior of this family of mesoscopic models, illustrates its significant utility
in modeling brain activity, and showcases the benefits of adopting a perspective from systems and
controls to analyze how neuronal networks optimize their computational capabilities. We hope our
exposition will spur further investigations at the intersection of neuroscience and control to realize
the potential of network and control-theoretic tools in deepening our understanding of the interplay
between structure and dynamics in the brain, its role in shaping dynamical behavior, performance,
and robustness, and the mechanisms that govern information transfer.
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Figure 1. Graph-theoretic model of a brain network. Excitatory neurons and connec-
tions are shown in red, while inhibitory neurons and populations are shown in blue.
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Figure 2. An intracellular recording showing a spike train as is used for communication
between neurons (top) and the corresponding firing rate (bottom), estimated by binning
spikes in 100ms bins and smoothing using a Gaussian window with 500ms standard devi-
ation [6, 124, 125].
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Figure 3. The sigmoidal (left) and linear-threshold (right) activation functions are com-
monly used for defining firing rate models.
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Figure 4. Feedback and feedforward mechanisms of control within brain networks. The
left panel shows an inhibitory feedback loop, where an excitatory signal (red) from the
main neuronal population (grey) stimulates an inhibitory interneuron (blue), which in
turn inhibits the main population. The right panel shows the feedforward inhibition
mechanism, where an excitatory signal from a separate neuronal population stimulates
an inhibitory interneuron as well as the main population. The interneuron then inhibits
the main population, typically resulting in its net inhibition.
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Figure 5. Brain region divided into task-irrelevant (grey) and task-relevant (red and blue)
neuron populations. The task-irrelevant nodes make up x0 in the partition of the state,
while the task-relevant nodes form x1. The control input u(t) is used to selectively inhibit
the task-irrelevant populations, while the input d̃1 recruits the task-relevant populations
to an equilibrium.
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Figure 7. EEG recording of an epileptic waveform [87]. Sections of the waveforms are la-
beled according to the activity types described in Remark 4. S1 corresponds to healthy
background activity, S2 to low frequency spikes, S3 to irregular high frequency oscilla-
tions and S4 to quasi-sinusoidal low-frequency oscillations. S5 and S6 correspond to
high frequency oscillations and slow waves, respectively [59].
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Figure 8. Basic epileptic waveforms (cf. Figure 7) replicated from an excitatory-
inhibitory pair with LTN dynamics, as shown in (10).
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Figure 9. The network (12) with two permitted sets and one forbidden set highlighted.
We see that a memory can be encoded on the set {1, 2, 4} and no memories can be
encoded on the set {2, 3, 4} from the first and third images, respectively. The middle
image illustrates that a memory can be encoded on the node set {1, 2}, which can be
determined both by Theorem 13 and by Corollary 14.
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Figure 10. Topologies for thalamocortical multi-region brain networks considered in
the paper: (a) multilayer hierarchical thalamocortical network, where each layer is con-
nected directly to the thalamus, as well as the layers directly above and below it; (b)
star-connected thalamocortical network, where each cortical layer is connected to the
thalamus layer only. In both plots, task-relevant excitatory and inhibitory nodes are de-
picted in red and blue, respectively, and (transiently silenced) task-irrelevant nodes are
depicted in grey.
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Figure 11. Selective inhibition in a three-layer hierarchical thalamocortical network. In
the second, third, and thalamic layers, one node is selectively inhibited while the other
two are recruited.
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Figure 12. Selective inhibition in a three-layer star-connected thalamocortical network
formed by removing the corticocortical connections from a hierarchical network. In
the second, third, and thalamic layers, one node is selectively inhibited while the other
two are recruited. As in the original network, selective inhibition and recruitment is
achieved, but the recruitment is to a different set of equilibria trajectories, as expected.
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Figure 13. Illustration of oscillations stopping in a network following the interconnec-
tion of E-I pairs. Here the excitatory nodes are denoted by red lines and the inhibitory
nodes by blue lines. Both pairs satisfy the conditions of Theorem 18 and independently
oscillate, but at t = 15 when the pairs are connected, the oscillatory behavior ends in
the entire network.
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Figure 14. Illustration of oscillations spreading through a network of excitatory-
inhibitory pairs upon interconnections. Here the excitatory nodes are denoted by red
lines and the inhibitory nodes by blue lines. Initially the three pairs are distinct and only
one oscillates, but as they are interconnected at t = 15 and t = 30, oscillations spread
from the first pair to the others.
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Figure 15. [99] Samples of the possible oscillatory behaviors with the CTLN dynam-
ics. The top panels illustrate the pattern of the weight matrix, with black squares in-
dicating non-zero connections, white squares indicating no connections, and diagonal
self-connections in grey. The bottom panels show two-dimensional projections of the
dynamics. From this we can see that under appropriate network structure and parame-
ter choices, the CTLN dynamics exhibit a wide range of oscillatory behavior.
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Figure 16. Maximal Lyapunov Exponent (MLE) as a function of network size (n) and in-
terconnection strength between E-I pairs (η). The MLE increases as a function of both
parameters until η reaches a critical value at which point the MLE drops immediately
due to the lack of oscillations in the network caused by the existence of a stable equi-
librium [101].
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Table 1. Relation between the type of bifurcation and the change in EEG waveform
behavior for networks satisfying the structural conditions in Theorem 7 as defined by
Remark 4 [61].

Network Structure Initial Behavior Bifurcation Resulting Behavior
(A) Healthy background P-BEB Healthy background
(B) Healthy background P-BEB Healthy background
(C) Healthy background NSF Spikes

Spikes NSF Healthy background
Healthy background NSF Spikes

(D) Spikes Hopf Oscillations
Oscillations Hopf Slow waves
Slow waves NSF Healthy background
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1 Article Summary
Over the past two decades, an increasing array of control-theoretic methods have been used to study
the brain as a complex dynamical system and better understand its structure-function relationship.
This article provides an overview on one such family of methods, based on the linear-threshold
rate (LTR) dynamics, which arises when modeling the spiking activity of neuronal populations
and their impact on each other. LTR dynamics exhibit a wide range of behaviors based on network
topologies and inputs, including mono- and multi-stability, limit cycles, and chaos, allowing it to be
used to model many complex brain processes involving fast and slow inhibition, multiple time and
spatial scales, different types of neural behavior, and higher-order interactions. Here we investigate
how the versatility of LTR dynamics paired with concepts and tools from systems and control
can provide a computational theory for explaining the dynamical mechanisms enabling different
brain processes. Specifically, we illustrate stability and stabilization properties of LTR dynamics
and how they are related to goal-driven selective attention, multistability and its relationship with
declarative memory, and bifurcations and oscillations and their role in modeling seizure dynamics
in epilepsy. We conclude with a discussion on additional properties of LTR dynamics and an
outlook on other brain processess that for which they might be play a similar role.
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2 Sidebar: Examples of Neural Activities Through the Lens of
Dynamical Systems

. In this article we will pay particular attention goal-driven selective attention (GDSA), declarative
memory, and epileptic seizure activity.

• GDSA is the process in which the brain actively determines which subset of the currently
incoming sensory information is relevant for the current task in order to process it, while
simultaneously suppressing irrelevant information. These two components are referred to
as selective recruitment and selective inhibition, respectively. Examples of GDSA include
selective vision in busy visual fields, selective listening in a noisy environment, and selective
smell. While GDSA has been widely studied in the neuroscience community, see e.g., [126,
127, 128, 50, 129, 52, 130], the recent work [6, 7, 79] approaches it from a dynamical
systems perspective.

• Epilepsy is a disease of the brain characterized by recurrent seizures. While seizures can
take different forms and have varying symptoms, they all include abnormal brain activity,
typically either excessive or highly synchronous oscillatory behavior [131]. Seizures have
been studied extensively through the dynamical systems perspective with a variety of mod-
els [132, 133, 134] and approaches [60, 135, 136, 137, 56], including the linear-threshold
model [61, 91]. Dynamical systems approaches to seizures have been effective due to the
ability to relate seizures with bifurcations in the network, capturing the sudden switch from
healthy to seizure behavior.

• Research of memory models dates back to the late 19th century [138], and are extensive [139,
140, 141] with general divisions between short-term and long-term memory being constant
across the literature. By the 1990’s, models included further divisions, with working mem-
ory being key for short-term memory and long term memory divided into declarative and
non-declarative memory [142]. In this paper we consider declarative memory, which is the
component of long-term memory that includes the ability to consciously store and retrieve
personal information (episodic memory) and general knowledge (semantic memory) [65]. In
the 1980’s both short and long-term memory models started to be considered using a dynam-
ical systems approach [66, 67], with memories being defined by properties of the dynamics.
Since these early studies the modeling of memory has been extensively studied with a sys-
tems theory approach [143, 144, 145, 68, 146], motivated by the ability to relate the structure
of the network with the observed activity patterns through the models.
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3 Sidebar: The Thalamus - More than a Relay Station
The thalamus is a component of many different brain networks and thus plays a role in a large
number of functions. Traditionally, the thalamus has been considered primarily as being a sensory
relay to the cortex, playing minimal other functional roles [147]. Despite being known since
the late 19th century to have additional functions such as a role in memory loss [148], up until
recently the majority of the research into thalamic function has studied its function as a sensory
relay [39, 149, 150]. This view was gradually changed by several works, including the pioneering
work [151], establishing the thalamus as a heterogeneous structure only a small portion of whose
nuclei play the role of a sensory relay. Following this work, research has shown that thalamus plays
a role in learning and memory [70], attention, impulse control and decision-making [152, 153], and
feedforward inhibitory control of cortical regions [152, 154, 43, 155], among others.

Thalamic nuclei can be broadly divided into two categories depending on their role in these
applications. Nuclei involved mainly in the role of the thalamus as a sensory relay are known as
first-order or specific and receive their input from other subcortical structures. The thalamic nu-
clei involved in the variety of other brain functions associated with the thalamus are referred to
as higher-order or non-specific and receive their inputs from varying cortical regions [42]. The
higher-order nuclei are then able to directly elicit activity in cortical regions based on the modula-
tion of inputs to the cortex. These divided roles in thalamic function motivate the construction of
separate models for explaining their functions in brain networks.

One mechanism for the interaction of thalamus with cortical regions is through feedforward
inhibitory control [155, 43, 44]. As such, when studying thalamocortical networks, models need
to take into account that many of the net impacts from the thalamus onto cortical regions are in-
hibitory, while returning connections are both excitatory and inhibitory. In the context of modeling
the brain from a control-theoretic perspective, the thalamus provides an exciting avenue of study as
an internal controller, modulating and transferring information between cortical regions in parallel
to cortico-cortical transmissions.
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4 Sidebar: Construction of Multi-Region Brain Networks
Multi-region brain networks are constructed through the interconnection of the dynamics of indi-
vidual brain regions. This occurs through the definition of sensory information processing path-
ways along connections within the structure of the network. Consider a single brain region, denoted
by N1, and defined by the dynamics

τ1ẋ1 = −x1 + [W1,1x1 + d1(t)]m1
0 .

With the internal dynamics of the brain region given by the synaptic weight matrix W1,1, we define
the processing pathways between regions in the input term d1(t). Let N2 denote a second brain
region, which we assume is connected to N1, forming a small network motif. Then, synaptic
weight matrices W1,2 and W2,1 represent the information processing pathways between the two
regions, defining the structure of the overall network. The input term d1(t) for N1 is then given by

d1(t) =W1,2x2 + B1u1(t) + c1,

where u1(t) is the control term for the region, and c1 corresponds to nonzero bias terms and any
unmodeled background activity. Then, defining the dynamics ofN2 with the same linear-threshold
activation function, and defining d2(t) analogously, the dynamics for the overall network composed
of N1 and N2 is

τ1ẋ1 = −x1 + [W1,1x1 +W1,2x2 + B1u1(t) + c1]m1
0

τ2ẋ2 = −x2 + [W2,2x2 +W2,1x1 + B2u2(t) + c2]m2
0 .

This process can then be used iteratively to construct brain networks of arbitrary size and con-
nectivity structure, which we will subsequently use to study GDSA and epileptic seizures over
interconnected brain networks.
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5 Sidebar: Remote Synchronization in Star-Connected
Thalamocortical Networks

A phenomenon of vast classical and recent interest in neuroscience is that of synchronization be-
tween brain regions [156, 157]. In particular, remote synchronization refers to the condition where
regions in a network synchronize despite a lack of direct links between them [158]. Remote syn-
chronization is frequently studied in networks of oscillators, such as the Kuramoto model [159]
of neural population phase oscillators. In particular, [160] studies remote synchronization in star-
connected networks where synchronization can only happen remotely between peripheral nodes
due to the lack of direct connections between them.

Remote synchronization is also commonly observed in the brain between distant cortical re-
gions, often in the context of functional connectivity analysis [161]. Given the thalamus’ hub-like
connectivity to cortical regions (similar to the above star topology), the thalamus has been sug-
gested to play a key role in remote synchronization within the brain [162]. Interestingly, it is
shown in [163] that remote synchronization is dependent on symmetry between the outer regions
in a star-connected topology, a phenomenon that is also shown to hold for remote synchronization
of both linear-threshold and Kuramoto oscillator star-connected thalamocortical networks in [79]
and [160], respectively.
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