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Safe and Dynamically-Feasible Motion Planning
using Control Lyapunov and Barrier Functions

Pol Mestres Carlos Nieto-Granda Jorge Cortés

Abstract—This paper considers the problem of designing mo-
tion planning algorithms for control-affine systems that generate
collision-free paths from an initial to a final destination and can
be executed using safe and dynamically-feasible controllers. We
introduce the C-CLF-CBF-RRT algorithm, which produces paths
with such properties and leverages rapidly exploring random
trees (RRTs), control Lyapunov functions (CLFs) and control
barrier functions (CBFs). We show that C-CLF-CBF-RRT is
computationally efficient for a variety of different dynamics
and obstacles, and establish its probabilistic completeness. We
showcase the performance of C-CLF-CBF-RRT in different
simulation and hardware experiments.

I. INTRODUCTION

Motion planning refers to the problem of computing a
collision-free trajectory for a mobile agent to go from an
initial state to a goal state. Motion planning algorithms are the
backbone of many robotics applications, but their implemen-
tation remains challenging for robots with complex dynamics
and environments with irregular obstacles. Even in scenarios
where the robot dynamics and the environment obstacles are
known, obtaining motion plans is in general a challenging task.
Most motion planning algorithms generate high-level plans,
consisting of sequences of waypoints in the configuration
space, and assume the availability of low-level controllers
that can follow such waypoints while avoiding collisions with
obstacles. An example of low-level controllers frequently used
in applications requiring collision-free navigation are those
based on control barrier functions (CBFs) for safety and
control Lyapunov functions (CLFs) for stability. However,
controllers that simultaneously address safety and stability
of the different waypoints might in general be not well-
defined. This work is motivated by the need to bridge the
gap between motion planner implementations and low-level
CLF-CBF controllers that produce dynamically feasible safe
trajectories.

Literature Review: Sampling-based motion planning [1]
seeks to find a collision-free path from an initial state to a
goal state through randomly sampling the state space. Despite
its simplicity, it has been shown to be a practical solution
for efficiently finding feasible paths even for high-dimensional
problems. Rapidly-exploring random trees (RRTs) [2] and
its variants [3], [4] are a family of sampling-based motion
planning algorithms that are simple to implement and are
probabilistically complete, meaning that a feasible path (if
it exists) is found with probability one as the number of
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samples goes to infinity. RRTs build a tree rooted at a starting
configuration and efficiently explore the configuration space by
adding more samples. Despite the widespread use of RRT and
the variants outlined above, their performance in systems with
general differential constraints and dynamics remains limited,
since they rely on the ability to connect any neighboring nodes
of the tree with a dynamically feasible trajectory. This requires
solving a two-point boundary value problem (BVP) [5, Chap-
ter 14], which in general is challenging. Different works [6],
[7] address this problem by developing algorithms that achieve
optimality guarantees for different classes of systems without
requiring the use of a BVP solver. On the one hand, [6]
considers controllable linear systems, for which the explicit
solution of the BVP can be computed, and [7] focuses on
non-holonomic systems where Chow’s condition holds, whose
accessibility properties can also be used to sidestep the use of
a BVP solver. Alternatively, other works introduce heuristics
that approximate the solution of the BVP: [8], [9] do it using
the linear quadratic regulator, and [10] leverages bang-bang
controllers. Other works circumvent solving the BVP by using
learning-based approaches. For instance, [11], [12] introduces
an offline machine learning phase that learns the solution of
the BVP, [13] refines the generation of the dataset used in this
offline phase, and [14] learns the solution of the BVP using
reinforcement learning techniques.

Here we bypass the need to solve the BVP by using two
sets of well-established tools: control Lyapunov functions
(CLFs) [15], for designing stabilizing controllers for nonlinear
systems, and control barrier functions (CBFs) [16], [17], for
rendering safe a desired set. In applications where safety and
stability specifications need to be met simultaneously, the CLF
and CBF conditions can be combined in a variety of different
formulations including a quadratic program with a relaxation
variable [18], safety filters [19] (where the CBF condition
acts on top of a stabilizing nominal controller), or designs
based on penalty methods [20]. Even though these control
designs have shown great success in applications such as
adaptive cruise control [21] and bipedal walking [22], different
works have shown that, when combined, they can lead to the
existence of undesirable equilibria [23]–[25], which can even
be asymptotically stable and have large regions of attraction,
or the lack of feasibility [20], [26], [27] between the CBF and
CLF conditions.

There exist a few works in the literature [28]–[31] that
combine the effectiveness of RRT-based algorithms with the
guarantees and computational efficiency provided by CBFs
and CLFs, hence also bypassing the need to compute the
solution of a BVP. However, these approaches require the
simulation of trajectories derived from a CLF-CBF-based
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controller in order to determine whether new candidate nodes
should be added to the tree. The repeated simulation of
such trajectories can significantly slow down the search for
a feasible path and compromise the computational efficiency
of the resulting algorithm. Moreover, these existing works do
not formally ensure that the low-level CLF and CBF-based
controller possesses both safety and stability guarantees.

Statement of Contributions: We consider the problem of
designing motion planning algorithms that generate collison-
free paths from an initial to a final destination for systems
with control-affine dynamics. To ensure that the sequence of
waypoints generated by the sampling-based algorithm can be
tracked by a suitable controller while ensuring safety and
stability, we leverage the theory of CBFs and CLFs. First, we
introduce a result of independent interest which shows that the
problem of verifying whether a CLF and a CBF are compatible
in a set of interest can be solved by finding the optimal value of
an optimization problem. We also show that for linear systems
and polytopic CBFs, such optimization problem reduces to a
quadratically constrained quadratic program (QCQP), and for
circular CBFs it can be solved in closed form. Next, we lever-
age these results to develop a variant of RRT, which we call
Compatible CLF-CBF-RRT (or C-CLF-CBF-RRT for short)
that generates collision-free paths that can be executed with a
CLF-CBF-based controller, and show that it is probabilistically
complete. Compared to other approaches in the literature, our
results on the compatibility verification of CBFs and CLFs
can be leveraged to ensure that the computational complexity
of C-CLF-CBF-RRT is tractable. Furthermore, we show how
our proposed approach can be generalized to systems where
safety constraints have a high relative degree. We illustrate our
results in simulation and hardware experiments for differential
drive robots and compare them with other approaches in the
literature.

II. PRELIMINARIES

This section introduces the notation and preliminaries on
control Lyapunov functions, control barrier functions, and
rapidly exploring random trees.

A. Notation

We denote by Z>0, R, and R≥0 the set of positive integers,
real, and nonnegative real numbers, resp. For N ∈ Z>0, we
denote [N ] = {1, 2, . . . , N}. Given x ∈ Rn, ∥x∥ denotes its
Euclidean norm. Let B ∈ Rn×m be a matrix. We denote by
Im(B) its image. Given a set S ⊂ Rn, we denote its boundary
by ∂S and its closure by Cl(S). We denote by B(x, δ) the
Euclidean closed ball of center x ∈ Rn and radius δ > 0, i.e.,
B(x, δ) := {y ∈ Rn : ∥y − x∥ ≤ δ}. Given an arbitrary set
A, we refer by P(A) to the power set of A, i.e., the set of all
subsets of A, including the empty set and A itself. The symbols
In, 0n denote the identity and zero matrices of dimension
n ∈ Z>0, and 0n is the zero vector of dimension n. Given
f : Rn → Rn, g : Rn → Rn×m and a smooth W : Rn → R,
the notation LfW : Rn → R (resp., LgW : Rn → Rm)
denotes the Lie derivative of W with respect to f (resp., g),
that is LfW = ∇WT f (resp.,∇WT g). A function β : R→ R
is extended class K∞ if it is continuous, β(0) = 0, β is strictly

increasing and lim
s→±∞

β(s) = ±∞. A function V : Rn → R
is positive definite with respect to q ∈ Rn if V (q) = 0 and
V (x) > 0 for x ̸= q. Given a locally Lipschitz function f :
Rn → R, its generalized gradient at x ∈ Rn is ∂f(x) =
co{ lim

i→∞
∇f(xi) : xi → x, xi /∈ S ∪ Γf}, where Γf is

the zero-measure set where f is non-differentiable and S is
any set of measure zero. An undirected graph M is a pair
M = (V, E), where V = {1, . . . , N} is a finite set called the
vertex set, E ⊂ V × V is called the edge set where (i, j) ∈
E if and only if (j, i) ∈ E . A path in M is a sequence of
vertices v1, . . . , vk, with k ∈ Z>0, such that for all i ∈ [k−1],
(vi, vi+1) ∈ E . A tree is an undirected graph in which there
exists a single path between any pair of vertices.

B. Control Lyapunov Functions and Nonsmooth Control Bar-
rier Functions

This section presents preliminaries on control Lyapunov
functions. Consider a control-affine system

ẋ = f(x) + g(x)u, (1)

where f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz functions, with x ∈ Rn the state and u ∈ Rm the
input. Throughout the paper, and without loss of generality,
we assume f(0) = 0, so that the origin x = 0 is the desired
equilibrium point of the (unforced) system.

We start by recalling the notion of Control Lyapunov
function (CLF) [32], [33].

Definition II.1. (Control Lyapunov Function): Given an open
set D ⊆ Rn, a point q ∈ Rn with q ∈ D, a continuously
differentiable function V : Rn → R is a CLF with respect to
q in D for the system (1) if

• V is proper in D, i.e., {x ∈ D : V (x) ≤ c} is a compact
set for all c > 0,

• V is positive definite with respect to q,
• there exists a continuous positive definite function W :

Rn → R with respect to q such that, for each x ∈ D,
there exists a control u ∈ Rm satisfying

LfV (x) + LgV (x)u ≤ −W (x). (2)

CLFs provide a way to guarantee asymptotic stability of
the origin. Namely, if a Lipschitz controller ust : Rn → Rm is
such that, for every x ∈ D, u = ust(x) satisfies (2), then the
origin is asymptotically stable for the closed-loop system [32].
Such controllers can be synthesized by means of the pointwise
minimum-norm (PMN) control optimization [33, Chapter 4.2],

u(x) = arg min
u∈Rm

1

2
∥u∥2

s.t. (2) holds.

Note that, at each x ∈ Rn, this is a quadratic program in u.
Next we define the notion of Boolean Nonsmooth Control

Barrier Function (BNCBF), adapted from [34, Definition II.8].

Definition II.2. (BNCBF [34, Definition II.8]): Given N ∈
Z>0, let hi : Rn → R, for i ∈ [N ], be continuously
differentiable functions. Let h(x) = maxi∈[N ] hi(x) and

C = {x ∈ Rn : h(x) ≥ 0}, (3a)
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∂C = {x ∈ Rn : h(x) = 0}. (3b)

Suppose that the set C is nonempty. Then, h is a BNCBF of
C for (1) if there exists a locally Lipschitz extended class K∞
function α : R → R such that for every x ∈ C there exists
u ∈ Rm such that,

min
v∈∂h(x)

vT (f(x) + g(x)u) ≥ −α(h(x)).

In case N = 1, Definition II.2 reduces to the standard notion
of Control Barrier Function [16, Definition 2]. Given x ∈ Rn,
let I(x) := {i ∈ [N ] : h(x) = hi(x)} denote the set of active
functions. The following result is adapted from [34, Theorem
III.6] and provides a sufficient condition for h to be a BNCBF.

Proposition II.3. (Sufficient Condition for BNCBF): Suppose
there is an extended class K∞ function α : R→ R such that,
for all x ∈ Rn, there exists u ∈ Rm with

Lfhi(x) + Lghi(x)u ≥ −α(h(x)), (4)

for all i ∈ I(x). Then, h is a BNCBF of C.

If a measurable and locally bounded controller usf : Rn →
Rm is such that, for every x ∈ Rn, u = usf(x) satisfies (4),
then usf renders C forward invariant (cf. [34, Theorem II.7,
Definition II.8]).

When dealing with both safety and stability specifications,
it is important to note that an input u might satisfy (2) but
not (4), or vice versa. The following notion, adapted from [27,
Definition 2.3], captures when a CLF V and a BNCBF h are
compatible.

Definition II.4. (Compatibility of CLF-BNCBF pair): LetD ⊆
Rn be open, C ⊂ D be closed, V a CLF on D and h a
BNCBF of C. Then, V and h are compatible in a set D̃ ⊂ D
if there exist a positive definite function W : Rn → R and
an extended class K∞ function α : R → R such that, for all
x ∈ D̃, there exists u ∈ Rm satisfying (2) and (4) for all
i ∈ I(x) simultaneously.

If V and h are compatible in a set D̃, we can define the
minimum norm controller that satisfies the CLF and BNCBF
conditions u∗ : D̃ → Rm as follows:

u∗(x) := arg min
u∈Rm

1

2
∥u∥2 (5)

s.t. LfV (x) + LgV (x)u ≤ −W (x),

Lfhi(x) + Lghi(x)u ≥ −α(h(x)), ∀ i ∈ I(x).

If u∗ is locally Lipschitz, then it ensures that C is forward
invariant and that the origin is asymptotically stable for the
closed-loop system.

C. Rapidly-exploring Random Trees (RRTs)
Here, we review GEOM-RRT [3], cf. Algorithm 1, a version

of RRT [2] upon which we rely later. The input for GEOM-RRT
consists of a state space X , an initial configuration xinit, goal
region Xgoal, number of iterations k, and a steering parameter
η whose use is defined in the sequel. The algorithm builds a
tree T by executing k iterations of the following form:

At each iteration, a new random sample
xrand is obtained by uniformly sampling X

Algorithm 1 GEOM-RRT

1: Parameters: xinit,Xgoal, k, η
2: T .init(xinit)
3: for i ∈ [1, . . . , k] do
4: xrand ← RANDOM STATE
5: xnear ← NEAREST NEIGHBOR(xrand, T )
6: xnew ← NEW STATE(xrand, xnear, η)
7: if COLLISION FREE(xnear, xnew) then
8: T .add vertex(xnew)
9: T .add edge(xnear, xnew)

10: if xnew ∈ Xgoal then
11: return T
12: end if
13: end if
14: end for
15: return T

using RANDOM STATE(). The function
NEAREST NEIGHBOR(xrand, T ) returns the vertex
xnear from T that is closest in the Euclidean distance
to xrand. Next, a new configuration xnew ∈ X is
returned by the NEW STATE function such that
xnew is on the line segment between xnear and xrand
and the distance ∥xnear − xnew∥ is at most η. Finally,
the function COLLISION FREE(xnear, xnew) checks
whether the straight line from xnear and xnew is
collision free. If this is the case, xnew is added as a
vertex to T and is connected by an edge from xnear.
If xnew ∈ Xgoal, there exists a single path in T from
xinit to xnew.

A notable property of GEOM-RRT is that it is probabilisti-
cally complete, meaning that the probability that the algorithm
will return a collision-free path from the initial state to the goal
state (if one exists) approaches one as the number of iterations
tends to infinity [35].

III. PROBLEM STATEMENT

Let R be a compact and convex set in Rn containing M
known obstacles {Ol}Ml=1, with Int(Oi) ∩ Int(Oj) = ∅ for all
i ̸= j ∈ [M ]. Let F := R\∪Ml=1Ol denote the safe space. For
each l ∈ [M ], we assume that there exists a positive integer
Nl ∈ Z>0 and known continuously differentiable functions
{hi,l : Rn → R}i∈[Nl] such that Ol := {x ∈ Rn : hl(x) =
maxi∈[Nl] hi,l(x) < 0}. Even though this imposes a specific
structure on the set Ol, one can obtain more complex obstacles
by considering sets of the form ∪i∈MOi, with M a subset
of [M ].

The robot dynamics are control-affine of the form (1), with
f : Rn → Rn and g : Rn → Rm locally Lipschitz. For each
l ∈ [M ], hl is a BNCBF of Rn\Ol for these dynamics, with
associated extended class K∞ function αl. We also assume
that

∇hi,l(x)T g(x) ̸= 0m, ∀x ∈ F , l ∈ [M ], i ∈ [Nl],

i.e., one differentiation of hi,l already makes the input u appear
explicitly. We let Il(x) = {i ∈ [Nl] : hl(x) = hi,l(x)}.
Given an initial state xinit ∈ R and a final goal set Xgoal ⊂ R,
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our aim is to develop a sampling-based motion planning
algorithm that constructs a collision-free path A := {xi}Na

i=1

from xinit to Xgoal that is dynamically feasible, i.e., such that
for each pair of consecutive waypoints in A, there exists a
control law that generates a safe trajectory that connects them.
Our approach to solve this problem leverages the theory of
CLFs and BNCBFs to design controllers which (i) have safety
and stability guarantees by design, and (ii) can be implemented
efficiently to help reduce the computational burden of gener-
ating dynamically feasible trajectories.

IV. CLF AND BNCBF COMPATIBILITY VERIFICATION

The key challenge in our proposed approach to the problem
outlined in Section III is that the optimization (5) defining
the CLF-CBF-based controller has to be feasible at all points
along the trajectory. In this section we tackle this problem
and show how such a feasibility check can be performed in
general, and how it is efficient in two specific cases of interest.

A. Compatibility Verification for General Dynamics and Ob-
stacles

In this section we consider the problem of verifying that
a CLF and a BNCBF are compatible in systems for general
dynamics and obstacles. The following result gives a charac-
terization for when a CLF and a BNCBF are compatible in
the region R.

Proposition IV.1. (Characterization of CLF-BNCBF Com-
patibility): Given q ∈ F , let Vq : Rn → R be a CLF
of (1) with respect to q. Let l ∈ [M ] and assume that hl
is a BNCBF of Rn\Ol. Let Wq : Rn → R be a positive
definite function with respect to q and αl : R → R be an
extended class K∞ function. For each J ⊂ P([Nl]), let
Zl,J := {x ∈ Rn : Il(x) = J } denote the set of points
where the active constraints defining obstacle Ol correspond
to the indices in J . For Γ ⊂ R, define

ζ1 = min
x∈Γ

{βi∈R}i∈J

∥∥∥∑
i∈J

βiLghi,l(x)− LgVq(x)
∥∥∥2 (6a)

s.t. βi ≥ 0, i ∈ J , (6b)
hj,l(x) ≤ hi,l(x), ∀j /∈ J , i ∈ J , (6c)
hl(x) ≥ 0. (6d)

If ζ1 ̸= 0, then Vq and hl are compatible in Zl,J ∩ Γ ∩ F .
Otherwise, if ζ1 = 0, let

ζ2 = min
x∈Γ

{βi∈R}i∈J

Φ(x, {βi}i∈J ), (7a)

s.t.
∑
i∈J

βiLghi,l(x) = LgVq(x), (7b)

βi ≥ 0, i ∈ J , (7c)
hj,l(x) ≤ hi,l(x), ∀j /∈ J , i ∈ J , (7d)
hl(x) ≥ 0, (7e)

for Φ(x, {βi}i∈J ) = −Wq(x) − LfVq(x) +∑
i∈J βi(Lfhi,l(x) + αl(hi,l(x))). If ζ2 ≥ 0, then Vq

and hl are compatible in Zl,J ∩ Γ ∩ F . Conversely, if Vq
and hl are compatible in Zl,J ∩ Γ ∩ F then there exists

an extended class K∞ function αl and a positive definite
function Wq with respect to q such that either ζ1 ̸= 0 or
ζ1 = 0 and ζ2 ≥ 0.

Proof. First note that if ζ1 = 0, the optimization prob-
lem (7) is feasible and therefore ζ2 is well-defined. By Farkas’
Lemma [36], Vq and hl are compatible at x ∈ Zl,J ∩ Γ ∩ F
if and only if for some positive definite function with respect
to q Wq and some extended class K∞ function αl, there do
not exist β0 ∈ R≥0, {βi}i∈J ⊂ R≥0 such that

β0LgVq(x) =
∑
i∈J

βiLghi,l(x), (8a)

β0(−LfVq(x)−W (x))

+
∑
i∈J

βi(αl(hi,l(x)) + Lfhi,l(x)) < 0. (8b)

First suppose that for some Wq and αl, either ζ1 ̸= 0 or
ζ1 = 0 and ζ2 ≥ 0. Suppose there exists a solution s∗1 =
(x∗, β∗

0 , {β∗
i }i∈Il(x)) of (8) and let us reach a contradiction.

If β∗
0 = 0, then, (8) implies that the constraints Lfhi,l(x) +

Lghi,l(x)u ≥ −αl(hi,l(x)) are not simultaneously feasible,
which means that hl is not a BNCBF, hence arriving at a
contradiction. Therefore, s∗1 must be such that β∗

0 > 0. By
taking β̃i = βi

β0
for i ∈ J , we deduce that (x∗, {β̃i}i∈J ) is a

solution of (6) with a value of the objective function equal to
zero. This means that if ζ1 ̸= 0, the solution s∗1 does not exist
and Vq and hl are compatible in Zl,J ∩ Γ ∩ F . Otherwise, if
ζ1 = 0, then (x∗, {β̃i}i∈J ) is a solution of (7) with a strictly
negative value of the objective function. This means that if
ζ1 = 0 and ζ2 ≥ 0, the solution s∗1 does not exist and Vq and
hl are compatible in Zl,J ∩ Γ ∩ F . Conversely, suppose that
Vq and hl are compatible in Zl,J ∩ Γ ∩ F . This implies that
there exists Wq and αl such that (8) has no solution. If (8a)
has no solution, then ζ1 ̸= 0. If (8a) has a solution but (8b)
does not, then ζ1 = 0 and ζ2 ≥ 0.

Note that Proposition IV.1 is valid for any set Γ ⊂ R. Often,
one is interested in verifying the compatibility of a CLF and
a BNCBF only in a small subset of R, in which case the
flexibility provided by the set Γ is useful.

Remark IV.2. (Checking for all Possible Sets of Active
Constraints): Given a subset J ⊂ P([Nl]) of functions {hi,l},
Proposition IV.1 provides a way to verify if the CLF and the
BNCBF are compatible at the points in the region of interest
Γ∩F where such functions are active. Let Hl,J := {x ∈ Γ :
Il(x) = J } be the points in Γ where the constraints with
index in J are active, and Sl := {J ⊂ P([Nl]) : Hl,J ̸= ∅}
be the sets of indices for which the above set is nonempty. The
class Sl contains all possible sets of active constraints in Γ.
By checking the condition in Proposition IV.1 for all J in Sl,
we can verify if the CLF and the BNCBF are compatible in
Γ ∩ F . In practice, given a region Γ where we are interested
in checking the compatibility of Vq and hl, one can often
identify the indices that can achieve a maximum value in Γ
(for example, for polytopic obstacles in the plane, only a few
of the functions hi,l have points in Γ where they take positive
values). This means that the cardinality of Sl is often small
and the number of checks using Proposition IV.1 can be kept
small. •
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Remark IV.3. (Verifying Compatibility for Multiple
BNCBFs): Proposition IV.1 actually provides a way to
check whether the optimization problem (5) is feasible at
all points of Γ. This can be done as follows: one first finds
all l ∈ [M ] such that Γ ∩ Ol ̸= ∅. If Γ can be expressed
as the 0-sublevel set of a convex differentiable function γ,
i.e., Γ := {x ∈ Rn : γ(x) ≤ 0}, and the functions hi,l are
convex, then this can be solved efficiently by checking that
the solution of the convex problem

min
x∈Rn

γ(x)

s.t. hi,l(x) ≤ 0, ∀i ∈ [Nl]

is non-positive. The BNCBF constraints associated with those
l′ ∈ [M ] such that Γ∩Ol′ = ∅ can be neglected since, given a
controller that satisfies all the other BNCBF constraints, it can
be shown to also satisfy the BNCBF constraints for such l′ ∈
[M ] by taking the corresponding extended class K∞ function
αl′ linear with sufficiently large slope. On the other hand, for
l′ ∈ [M ] such that Γ ∩Ol′ ̸= ∅, Proposition IV.1 ensures that
there exists a small neighborhood around ∂Ol′ , not containing
points of any other obstacle, where V and hl′ are compatible.
By taking the extended class K∞ functions of the other CBF
constraints as linear functions with sufficiently large slope, (5)
is feasible in each of these neighborhoods. Finally, for points
in Γ not belonging to any of these neighborhoods, the extended
class K∞ functions can also be taken as linear with sufficiently
large slope to guarantee that (5) is feasible. •

Remark IV.4. (About the Choice of CLF and Class K∞ Func-
tion): Note that, when solving the optimization problems (6)
and (7) for fixed Vq , αl, and Wq , it is not guaranteed that
ζ1 ̸= 0 or ζ1 = 0 and ζ2 ≥ 0. If α̃ is an extended class
K∞ function with α̃(s) ≥ α(s) for all s ∈ R, the objective
function Φ of (7) does not decrease at any point, which means
that the value of ζ1 remains the same, but the condition ζ2 ≥ 0
becomes easier to satisfy. A similar behavior occurs if W̃
is a positive definite function with W̃ (x) ≤ W (x) for all
x ∈ Rn. We leverage these observations in Section V when
we introduce our proposed motion planning algorithm. •

Remark IV.5. (Regularity Properties of the Controller): If Vq
and hl are compatible in R for all l ∈ [M ], the CLF-CBF-
based controller (5) is well defined, i.e., the optimization (5)
is feasible for all points in R. However, slightly stronger
conditions are needed to ensure that such CLF-CBF-based
controller is locally Lipschitz and therefore can be used to
render C forward invariant and the origin asymptotically stable.
We refer the reader to [37] for a survey on different conditions
that ensure continuity, Lipschitzness, and other regularity
properties of optimization-based controllers of the form (5).
These conditions are often satisfied in practice and are mostly
related to the dynamics and the specific obstacles, which in our
problem here are given and not subject to design. Therefore,
throughout this work, we assume that (5) satisfies at least one
of the sufficient conditions outlined in [37] that ensure that
the resulting controller is locally Lipschitz. •

Proposition IV.1 shows that the problem of checking
whether a CLF and a BNCBF are compatible in a region
of interest can be reduced to solving a pair of optimization

problems. However, in general, the optimization problems (6)
and (7) are not convex and can be computationally intractable.
Our forthcoming exposition provides two particular cases of
dynamics and obstacles for which these two optimization
problems are computationally tractable.

B. Compatibility Verification for Linear Systems and Polytopic
Obstacles

In this section we particularize our discussion to linear
dynamics,

ẋ = Ax+Bu, (9)

where A ∈ Rn×n, B ∈ Rn×m, and the obstacles are polytopic
(i.e., the functions hi,l are affine). We start by introducing
some useful notation. For each l ∈ [M ], let ai,l ∈ Rn, bi,l ∈ R
be such that hi,l(x) = aTi,lx+ bi,l. We further assume that hl
is a BNCBF, i.e., there exists an extended class K∞ function
αl such that, for all x ∈ Rn\Ol, there exists u ∈ Rm with

aTi,l(Ax+Bu) ≥ −αl(a
T
i,lx+ bi,l)

for all i ∈ Il(x). We further assume that given q ∈ Rn, a
quadratic CLF is available, i.e., we have a positive definite
matrix P ∈ Rn×n such that Vq : Rn → R, defined as Vq(x) =
(x − q)TP (x − q), is a CLF with respect to q in Rn of (9)
with associated positive definite function Wq : Rn → R.

The following result follows by applying Proposition IV.1
to the case when dynamics are linear and obstacles polytopic.

Proposition IV.6. (Sufficient Condition for CLF-BNCBF
Compatibility for Linear Dynamics and Polytopic Obstacles):
Let Γ ⊂ R, l ∈ [M ], J ∈ P([Nl]), q ∈ F , and define

ζ1 := min
x∈Γ

{βi∈R}i∈J

∥∥∥∥∥∑
i∈J

βiB
Tai,l −BTP (x− q)

∥∥∥∥∥
2

(10a)

s.t. βi ≥ 0, ∀i ∈ J , (10b)

aTj,lx+ bj,l ≤ aTi,lx+ bi,l, ∀j /∈ J , i ∈ J , (10c)

aTi,lx+ bi,l ≥ 0, i ∈ J . (10d)

If ζ1 ̸= 0, then Vq and hl are compatible in Zl,J ∩ Γ ∩ F .
Otherwise, if ζ1 = 0, let

ζ2 := min
x∈Γ

{βi∈R}i∈J

Φ(x, {βi}i∈J ) (11a)

s.t.
∑
i∈J

βiB
Tai,l = BTP (x− q), (11b)

βi ≥ 0, ∀i ∈ J , (11c)

aTj,lx+ bj,l ≤ aTi,lx+ bi,l, ∀j /∈ J , i ∈ J , (11d)

aTi,lx+ bi,l ≥ 0, i ∈ J , (11e)

with Φ(x, {βi}i∈J ) = −Wq(x) − (x − q)TPAx +∑
i∈J βi(αl(a

T
i,lx + bi,l) + aTi,lAx). If ζ2 ≥ 0, then Vq and

hl are compatible in Zl,J ∩ Γ ∩ F . Conversely, if Vq and hl
are compatible in Zl,J ∩Γ∩F , then there exists an extended
class K∞ function αl and a positive definite function Wq with
respect to q such that either ζ1 ̸= 0 or ζ1 = 0 and ζ2 ≥ 0.

We end this section by discussing the tractability of the
optimizations (10) and (11). If Wq is a quadratic function (as
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it is often the case in practice), α(s) = α0s, with α0 > 0,
and Γ is given by a sublevel set of a quadratic function (e.g.,
if it is the sublevel set a quadratic CLF Vq), then (10) and
(11) both have quadratic objective functions and quadratic
constraints, i.e., they are quadratically constrained quadratic
programs (QCQPs), for which efficient heuristics are available,
see e.g. [38]. Note, however, that the quadratic objective
functions might not be convex in the optimization variables,
and therefore (10) and (11) might not be convex in general.

C. Compatibility Verification for Single Integrator and Circu-
lar Obstacles

In this section we consider single-integrator dynamics, i.e.,

ẋ = u, (12)

and circular obstacles, i.e., Ol = {x ∈ Rn : ∥x− cl∥ <
r2l } for some cl ∈ Rn and rl > 0. In this case, we take
hl(x) = ∥x− cl∥2 − r2l , which is continuously differentiable
and therefore Nl = 1 for all l ∈ [M ]. We also take Vq(x) =
∥x− q∥2, and Wq(x) = (x− q)TQ(x− q), where Q ∈ Rn×n

is a positive definite matrix. Proposition IV.1 then takes the
following form.

Proposition IV.7. (Sufficient Condition for CLF-BNCBF
Compatibility for Single Integrator Dynamics and Circular
Obstacles): Let l ∈ [M ], αl > 0, x0 ∈ Rn\{q}, q ∈ F ,
Γ := {x ∈ Rn : Vq(x) ≤ Vq(x0)}, Bl := ∥q − cl∥2Q−2αlr

2
l ,

β+ :=

√
B2

l + 4α2
l r

2
l (∥q − cl∥

2 − r2l )−Bl

2αlr2l
,

and suppose that one of the following holds:
• ∥x0 − q∥ − ∥cl − q∥ > 0 and ∥x0−q∥

∥x0−q∥−∥cl−q∥ > 1 +
∥cl−q∥

rl
;

• ∥x0 − q∥ − ∥cl − q∥ > 0, ∥x0−q∥
∥x0−q∥−∥cl−q∥ ≤ 1 + ∥cl−q∥

rl

and β+ ≥ 1 + ∥cl−q∥
rl

;
• ∥x0 − q∥ − ∥cl − q∥ ≤ 0.

Then, Vq and hl are compatible in Γ ∩ F .

Proof. We rely on Proposition IV.1. In the setting considered
here, (6) reads as

ζ1 := min
x∈Γ,β∈R

∥2β(x− cl)− 2(x− q)∥2 (13a)

s.t. β ≥ 0, (13b)

∥x− cl∥2 − r2l ≥ 0. (13c)

It follows that ζ1 = 0 if and only if there exists x ∈ Γ and
β ∈ R\{1} (note that β = 1 and ζ1 = 0 are not possible
because q ∈ F) such that x = 1

β−1 (βcl − q), β ≥ 0 and
∥x− cl∥2 − r2l ≥ 0. Equivalently, ζ1 = 0 if and only if there
exists β ∈ R\{1} such that β ≥ 0, |β − 1| ≤ ∥cl−q∥

rl
and

β(∥x0 − q∥ − ∥cl − q∥) ≥ ∥x0 − q∥. Note that since q ∈ F ,
∥cl − q∥ ≥ rl, and therefore the condition β ≥ 1 − ∥cl−q∥

rl
trivially holds if β ≥ 0. Hence, ζ1 = 0 if and only if there
exists β ∈ R\{1} such that β ≥ 0, β ≤ 1 + ∥cl−q∥

rl
, and

β(∥x0 − q∥−∥cl − q∥) ≥ ∥x0 − q∥. We distinguish two cases:
(i) suppose that ∥x0 − q∥−∥cl − q∥ ≤ 0. Then, since x0 ̸= q,
it follows that β(∥x0 − q∥ − ∥cl − q∥) ≥ ∥x0 − q∥ can not

hold. Therefore, ζ1 ̸= 0 and Vq and hl are compatible in Γ; (ii)
suppose instead that ∥x0 − q∥ − ∥cl − q∥ > 0. Then, ζ1 = 0

if and only if ∥x0−q∥
∥x0−q∥−∥cl−q∥ ≤ 1 + ∥cl−q∥

rl
. Consequently, if

∥x0−q∥
∥x0−q∥−∥cl−q∥ > 1 + ∥cl−q∥

rl
, then Vq and hl are compatible

in Γ. Consider then the case when ∥x0−q∥
∥x0−q∥−∥cl−q∥ ≤ 1+ ∥cl−q∥

rl
so that ζ1 = 0. Then, (7) reads

ζ2 := min
β∈R\{1}

1

(β − 1)2
Φ̂(β) (14a)

s.t.
∥x0 − q∥

∥x0 − q∥ − ∥cl − q∥
≤ β ≤ 1 +

∥cl − q∥
rl

, (14b)

where Φ̂(β) = β(αl ∥q − cl∥2 − αlr
2
l (1 − β)2 − β(q −

cl)
TQ(q − cl)). By computing the roots of Φ̂(β) = 0, it

follows that if β+ ≥ 1 + ∥cl−q∥
rl

, then Φ̂(β) ≥ 0 for
all β ∈ [0, β+], which implies that Φ̂(β) ≥ 0 for all
β ∈ [ ∥x0−q∥

∥x0−q∥−∥cl−q∥ , 1 + ∥cl−q∥
rl

], from which it follows that
ζ2 ≥ 0 and Vq and hl are compatible in Γ.

Proposition IV.7 provides a test for compatibility over
a Lyapunov level set that only requires checking a set of
algebraic conditions. Therefore, checking the compatibility of
Vq = ∥x− q∥2 and hl(x) = ∥x− cl∥2 − r2l over a Lyapunov
sublevel set for a single integrator system can be done very
efficiently.

D. Compatibility Verification for Higher Relative Degree Sys-
tems

Here we extend the results of Section IV-A to a larger
class of system dynamics and barrier functions, specifically
High-Order Control Barrier Functions (HOCBFs) [39]. Let
h : Rn → R be a continuously differentiable function defining
a safe set of the form (3). Consider the situation where h has
to be differentiated m ∈ Z>0 times along the dynamics (1)
until the control u appears explicitly (this is referred to as m
being the relative degree of h under system (1), cf. [40]).

This means that, in order to ensure that the value of
h remains positive at all times (i.e., C is positively in-
variant), we need to reason with its higher-order deriva-
tives. To do so, given differentiable extended class K∞
functions α(1), α(2), . . . , α(m−1), define a series of functions
ϕ0, . . . , ϕm−1 : Rn → R as follows: ϕ0 = h and

ϕi(x) = Lfϕi−1(x) + α(i)(ϕi−1(x)), i ∈ {1, . . . ,m− 1}.

We further define sets C1, . . . , Cm as C1 = C and

Ci = {x ∈ Rn : ϕi−1(x) ≥ 0}, i ∈ {2, . . . ,m}.

The function h is a high-order control barrier function
(HOCBF) of C if one can find differentiable, extended class
K∞ functions α(1), α(2), . . . , α(m) such that, for all x ∈
C ∩ C2 ∩ . . . ∩ Cm, there exists u ∈ Rm satisfying

Lfϕm−1(x) + Lgϕm−1(x)u+ α(m)(ϕm−1(x)) ≥ 0. (15)

If m = 1, this definition corresponds to the notion of CBF.
According to [39, Theorem 5], any locally Lipschitz controller
that satisfies (15) at each x ∈ C ∩ C2 ∩ . . . ∩ Cm renders the
set C ∩ C2 ∩ . . . ∩ Cm positively invariant for system (1).

We next give an analogue of Definition II.4 for HOCBFs.
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Definition IV.8. (Compatibility of CLF-HOCBF pair): Let
D ⊂ Rn be open, C ⊂ D be closed, V a CLF on D
and h a HOCBF of C. Then, V and h are compatible at
x ∈ C ∩ C2 ∩ . . . ∩ Cm if there exists u ∈ Rm satisfying
(2) and (15) simultaneously. We refer to both functions as
compatible in a set D̃ if they are compatible at every point
in D̃.

The following result is an analogue of Proposition IV.1 for
the case when h is a HOCBF. Its proof follows an analogous
argument and we omit it for space reasons.

Proposition IV.9. (Characterization of CLF-HOCBF Compat-
ibility): Given q ∈ F , let Vq : Rn → R be a CLF of (1) with
respect to q. Let h be a HOCBF of C with relative degree
m ∈ Z>0. Let Wq : Rn → R be a positive definite function
with respect to q and α(1), α(2), . . . , α(m) be differentiable
extended class K∞ functions. For Γ ⊂ R, let

ζ1 = min
x∈Γ,β∈R

∥βLgϕm−1(x)− LgVq(x)∥2 , (16a)

s.t. β ≥ 0, ϕi(x) ≥ 0, i ∈ [m− 1]. (16b)

If ζ1 ̸= 0, then Vq and h are compatible in Γ∩C∩C2∩. . . Cm.
Otherwise, if ζ1 = 0, let

ζ2 = min
x∈Γ,β∈R

Φ̃(x, β) (17a)

s.t. β ≥ 0, ϕi(x) ≥ 0, i ∈ [m− 1], (17b)

where Φ̃(x, β) = −Wq(x) − LfVq(x) + β(Lfϕm−1(x) +
α(m)(ϕm−1(x))). If ζ2 ≥ 0, then Vq and h are compatible in
Γ∩C ∩C2∩ . . . Cm. Conversely, if Vq and h are compatible in
Γ∩C ∩C2∩ . . . Cm, then there exists a set of differentiable ex-
tended class K∞ functions α(1), α(2), . . . , α(m) and a positive
definite function Wq with respect to q such that either ζ1 ̸= 0
or ζ1 = 0 and ζ2 ≥ 0.

To conclude this section, we consider the case of double-
integrator dynamcs and circular obstacles. The double-
integrator dynamics are given by(

ẋ
v̇

)
=

(
0k Ik
0k 0k

)(
x
v

)
+

(
0k
Ik

)
u, (18)

with k ∈ Z>0 such that n = 2k, states x ∈ Rk and v ∈
Rk, and input u ∈ Rk. As pointed out in [41], only states
of the form (xf , 0k) ∈ Rn are stabilizable for (18), and for
any xf ∈ Rk, if we let q = (xf , 0n), then Vq : Rn → R
defined as Vq(x, v) = ∥x− xf∥2 + ∥v∥2 + (x − xf )T v is a
CLF with respect to q. Next, consider h : Rn → R given by
h(x, v) = ∥x− xc∥2 − r2, for some xc ∈ Rk and r > 0. The
following result shows that for this choice of V and h, (16)
and (17) take a tractable form.

Proposition IV.10. (CLF-HOCBF compatibility for circular
obstacles and double integrator): Consider the double in-
tegrator dynamics (18). Let q = (xf , 0k) ∈ Rn, and let
Vq(x, v) = ∥x− xf∥2 + ∥v∥2 + (x − xf )T v be a CLF with
respect to q, Wq : Rn → R a positive definite function with
respect to q, and h(x, v) = ∥x− xc∥2−r2 for some xc ∈ Rk,
r > 0 a HOCBF. Let α1 > 0, α2 > 0, and ϕ0 : Rn → R,
ϕ1 : Rn → R defined as:

ϕ0(x, v) = h(x),

ϕ1(x, v) = 2(x− xc)T v + α1(∥x− xc∥2 − r2),

and C1 = {(x, v) ∈ R2n : ϕ1(x, v) ≥ 0}. For Γ ⊂ R, let

ζ̂1 = min
x∈Γ,β∈R,x̃∈Rk

∥2x̃− 2v − (x− xf )∥2 , (19a)

s.t. β ≥ 0, ϕi(x) ≥ 0, i ∈ {0, 1}, (19b)
β(x− xc)− x̃ ≤ 0, x̃− β(x− xc) ≤ 0. (19c)

If ζ̂1 ̸= 0, then Vq and h are compatible in Γ ∩ C ∩ C1.
Otherwise, if ζ̂1 = 0, let

ζ̂2 = min
(x,v)∈Γ,β∈R,
x̃∈Rk,ṽ∈Rk

Φ̂(x, v, x̃, ṽ) (20a)

s.t. β ≥ 0, ϕi(x) ≥ 0, i ∈ {0, 1}, (20b)
2x̃− 2v + x− xf ≤ 0, (20c)
− 2x̃+ 2v − (x− xf ) ≤ 0, (20d)
β(x− xc)− x̃ ≤ 0, x̃− β(x− xc) ≤ 0,

(20e)
βv − ṽ ≤ 0, −βv + ṽ ≤ 0, (20f)

where Φ̂(x, v, x̃, ṽ) = 2ṽT v+α1x̃
T v+2α2x̃

T v+α2α1x̃
T (x−

xc)− α1α2r
2β − 2(x− xf )T v− ∥v∥2 −Wq(x, v). If ζ̂2 ≥ 0,

then Vq and h are compatible in Γ ∩ C ∩ C1.

Proof. The result follows from Proposition IV.9 and by intro-
ducing the new variables x̃ = β(x− xc), ṽ = βv.

Note that (19) is a QCQP, and if Wq is quadratic, (20) is
also a QCQP and can therefore be solved efficiently [38].

V. C-CLF-CBF-RRT

In this section, we introduce a novel motion planning
algorithm, termed Compatible-CLF-CBF-RRT
(C-CLF-CBF-RRT), that leverages the compatibility
results from Section IV to generate collision-free paths that
can be tracked using CLF-CBF based controllers.

A. CLF-CBF Compatible Paths

We start by defining formally the type of paths that we
seek to find using our motion planning algorithm. Intuitively,
a path is CLF-CBF compatible if the CLF-CBF controller (5)
successfully connects pairs of consecutive waypoints in the
path.

Definition V.1. (CLF-CBF Compatible Path): Let A =
{xi}Na

i=1 ⊂ F be a sequence of points, with Na ∈ Z>0,
x1 = xinit and xNa ∈ Xgoal := B(xgoal, δgoal), where
xgoal ∈ Rn and δgoal > 0. A is a CLF-CBF compatible path
if for each i ∈ [Na − 1],

(i) there exists a CLF Vi : Rn → R≥0 with respect to xi+1

in an open set containing Γi := {x ∈ Rn : Vi(x) ≤
Vi(xi)} for system (1);

(ii) there exist extended class K∞ functions {αi,l : R →
R}l∈[M ] and positive definite functions Wi : Rn → R≥0

with respect to xi+1 such that the optimization problem

min
u∈Rm

1

2
∥u∥2 (21)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −αi,l(hj,l(x)),
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∀j ∈ Il(x), l ∈ [M ],

LfVi(x) + LgVi(x)u+Wi(x) ≤ 0.

is feasible for all x ∈ Γi ∩ F .

For each i ∈ [Na− 1], let u∗i : Γi ∩F → Rm be a function
mapping each x ∈ Γi ∩ F to the solution of (21). Under
the assumption that u∗i is locally Lipschitz, cf. Remark IV.5,
the feasibility of (21) ensures that the solution of the closed-
loop system ẋ = f(x) + g(x)u∗i (x) with initial condition
at xi is collision-free and asymptotically converges to xi+1.
Therefore, CLF-CBF compatible paths guarantee that the
controller obtained by solving (21) for each waypoint steers
an agent obeying the dynamics (1) towards the next waypoint
while remaining collision-free. Even though the convergence
to the waypoint xi+1 is only achieved in infinite time, one can
execute the controller u∗i until the agent is sufficiently close to
xi+1 and then switch to the next controller u∗i+1. We elaborate
more on this point in Section VI, where we identify conditions
on the CLF-CBF compatible path under which the controllers
{u∗i }

Na−1
i=1 can steer the agent from a neighborhood of each

waypoint to a neighborhood of the next one.

Remark V.2. (Controllability Requirements for CLF-CBF
Compatible Paths): Definition V.1 requires each of the points
in the path A to be asymptotically stabilizable. This condition
imposes some structural properties on the class of systems that
admit such paths, which we examine next:

Fully actuated systems: In the case when m = n and g(x)
is invertible for all x ∈ Rn, CLF-CBF compatible paths
exist because any point q ∈ Rn is asymptotically stabi-
lizable. Indeed, in this setting the function Vq : Rn → R
defined by Vq(x) = 1

2 ∥x− q∥
2 is a CLF with respect

to q;
Underactuated systems: In the case when m < n, the set

of stabilizable points is limited. For instance, for linear
systems with f(x) = Ax and g(x) = B, with A ∈ Rn×n

and B ∈ Rn×m, only the points q ∈ Rn such that Aq ∈
Im(B) are stabilizable. This is not a major restriction
in a lot of cases of interest. For example, for a double-
integrator system, where m = k and n = 2k, with k ∈
Z>0, and

A =

(
0k Ik
0k 0k

)
, B =

(
0k
Ik

)
,

this condition restricts the set of stabilizable points to
those that have a zero velocity, but arbitrary position, as
pointed out in Section IV-D. In general, if m < n, there
often exists a smooth change of coordinates ψ : Rn →
Rm that transforms the dynamics into a single integrator
in Rm. In [42, Section IV.A] and [43], for instance,
this is achieved for unicycle dynamics, by taking the
transformation ψ(x1, x2, θ) = [x1+l cos(θ), x2+l sin(θ)]
(where l > 0 is a positive design parameter). Then, for
any q ∈ Im(ψ), the set Mq = {x ∈ Rn : ψ(x) = q}
can be asymptotically stabilized. Therefore, if m < n
but such a transformation ψ exists, Definition V.1 can
be adapted so that the points in A are in sets of the
form Mq . •

B. Algorithm Description
In this section we introduce the C-CLF-CBF-RRT algo-

rithm, which builds upon RRT, cf. Section II-C, and generates
CLF-CBF compatible paths. Algorithm 2 presents the pseu-
docode description.

Algorithm 2 C-CLF-CBF-RRT

1: Parameters: R, xinit, Xgoal, k, τ , η, {hl, αl}Ml=1

2: T .init(xinit)
3: for i ∈ [1, . . . , k] do
4: xrand ← RANDOM STATE()
5: xnear ← NEAREST NEIGHBOR(xrand, T )
6: xnew ← NEW STATE(xrand, xnear, η)
7: if not FREE SPACE(xnew) then
8: skip to next iteration
9: end if

10: V,W ← FIND CLF(xnew)
11: if COMPATIBILITY(xnear, xnew, τ, {hl, αl}Ml=1,V ,W )

then
12: T .add vertex(xnew)
13: T .add edge(xnear, xnew)
14: if xnew ∈ Xgoal then
15: return T
16: end if
17: end if
18: end for
19: return T

The input for C-CLF-CBF-RRT consists of a compact,
convex set R ⊂ Rn, an initial configuration xinit ∈ Rn, a
goal region Xgoal ⊂ Rn, the number of iterations k ∈ Z>0

of the algorithm, the number of iterations τ ∈ Z>0 for the
compatibility check, a set of extended class K∞ functions
{αl}Ml=1, the steering parameter η > 0, and a set of obstacles
{Ol}Ml=1 defined by functions hl : Rn → R for l ∈ [M ]. At
the beginning, a tree T is initialized with a single node at xinit
and no edges.

The C-CLF-CBF-RRT algorithm operates similarly to the
GEOM-RRT algorithm described in Section II-C.

At each iteration, steps 4:-6: are the same as in
Algorithm 1. In general, RANDOM STATE samples
R uniformly, but if we know that only a subset
of the points in R is stabilizable, one can choose
to sample uniformly only over such points. The
functions NEAREST NEIGHBOR and NEW STATE
operate identically to how they do in GEOM-RRT.
We note that, since R is convex, xnew is guaranteed
to belong to it. Next, the function FREE SPACE
checks whether xnew ∈ F . If xnew /∈ F , it skips
to the next iteration. Otherwise, FIND CLF finds a
CLF V and associated positive definite function W
with respect to xnew. Then, the COMPATIBILITY
function checks whether there exists a CLF-CBF
based controller that steers the system from xnear
to xnew. If the COMPATIBILITY function returns
a value of True, then xnew is added as a vertex
to T and is connected by an edge from xnear. If
xnew ∈ Xgoal, there exists a single path in T from
xinit to xnew.
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Regarding the search for a control Lyapunov function with
FIND CLF, beyond what we noted in Remark V.2, one
can also use a variety of tools from the literature, such
as sum-of-squares techniques [44] or neural networks [45].
In Section V-C, we discuss in detail the definition of
COMPATIBILITY function.

Remark V.3. (Sampling in Underactuated Systems): A re-
quirement for step 7: of Algorithm 2 to return a value of
True is that xnew is stabilizable. Since this point is obtained
through random sampling, in general this might not be the
case. However, if we know the set of points that are stabilizable
(for instance, an m-dimensional manifold M in the case of
underactuated systems with m controls, cf. Remark V.2), then
we can project xnew onto such set. •

C. The COMPATIBILITY function
Here we define the operation of the COMPATIBILITY

function. Given the CLF V and the positive definite function
W with respect to xnew found by FIND CLF, it checks
whether the optimization problem

min
u∈Rm

1

2
∥u∥2 , (22)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −αl(hj,l(x)),

∀j ∈ Il(x), l ∈ [M ],

LfV (x) + LgV (x)u+W (x) ≤ 0.

is feasible for all x ∈ Θ∩F , where Θ = {x ∈ Rn : V (x) ≤
V (xnear)} and αl is the class K∞ function associated with hl.

1. Find obstacles that intersect domain of interest: To check
whether (22) is feasible, we first find the obstacles that inter-
sect Θ, i.e., we find l ∈ [M ] such that Cl(Ol) ∩Θ ̸= ∅. This
can be done by solving the following optimization problem
for every l ∈ [M ]:

min
x∈Rn

V (x) (23)

s.t. hi,l(x) ≤ 0, ∀i ∈ [Nl].

Then, Cl(Ol)∩Θ ̸= ∅ if and only if the optimal value of (23) is
smaller than or equal to V (xnear). Problem (23) is tractable, for
instance, under the settings considered in Section IV, where V
is quadratic and the constraints are affine (in which case (23)
is a quadratic program) or ellipsoidal (in which case (23) is a
QCQP).

2. Reduce number of constraints and check for compat-
ibility: Next, we reduce the number of constraints in (22)
to L := {l ∈ [M ] : Θ ∩ Cl(Ol)} (Lemma A.1 ensures
this step retains consistency). Then, COMPATIBILITY uses
Proposition IV.1 for each l ∈ L. First, for each l ∈ L, it solves
the optimization problem (6) with Γ = Θ and obtains the value
ζ1,l. If ζ1,l = 0, it solves (7) with Γ = Θ and obtains the value
ζ2,l. If for all l ∈ L, the obtained values of ζ1,l and ζ2,l are
such that ζ1,l ̸= 0 or ζ1,l = 0 and ζ2,l ≥ 0, then V and hl
are compatible in Θ∩F for all l ∈ L and COMPATIBILITY
returns True.

3. If unsuccessful, increase feasibility set and recheck:
Otherwise, it updates the set of extended class K∞ functions
and the function W in a way that increases the feasible
set of (22), and performs again the same check about its

feasibility. In every subsequent iteration, we use a new W
obtained by multiplying the previous one by a constant factor
σ ∈ (0, 1), and use linear extended class K∞ functions
αl(s) = α0,ls with the parameter α0,l being multiplied by
a constant factor greater than 1 at every iteration. With this
choice, the objective function Φ of (7) does not decrease at any
point, which means that the value of ζ1 remains the same but
the condition ζ2 ≥ 0 becomes easier to satisfy, which makes
it easier for COMPATIBILITY to return a value of True. If
after τ of those updates the function still has not returned a
value of True, it returns a value of False.

VI. ANALYSIS OF C-CLF-CBF-RRT

In this section we establish the probabilistic completeness
of C-CLF-CBF-RRT. We do this by first showing that if
C-CLF-CBF-RRT returns a tree with a vertex in Xgoal, then
this tree contains a CLF-CBF compatible path; and then
showing that, under suitable conditions, C-CLF-CBF-RRT in
fact returns a tree with a vertex in Xgoal with high probability.

Proposition VI.1. (C-CLF-CBF-RRT and CLF-CBF Com-
patible Path): Suppose that C-CLF-CBF-RRT returns a tree
T that contains a vertex qgoal ∈ Xgoal. Then, the single path
in T from xinit to qgoal is CLF-CBF compatible.

Proof. Let Na ∈ Z>0 and A = {xi}Na
i=1 be the path obtained

from C-CLF-CBF-RRT, with x1 = xinit and xNa
∈ Xgoal.

First, FREE SPACE ensures that xi ∈ F for all i ∈ [Na].
Moreover, FIND CLF ensures that, for all i ∈ [Na−1], there
exists a CLF Vi with respect to xi+1, and COMPATIBILITY
ensures that there exists a set of class K∞ functions {αi,l}Ml=1

and a positive definite function Wi with respect to xi+1 such
that the optimization problem (21) is feasible for all points in
the set {x ∈ Rn : Vi(x) ≤ Vi(xi)} ∩ F . This ensures that A
is CLF-CBF compatible.

We next show that, under some extra assumptions,
C-CLF-CBF-RRT returns a tree with a vertex in Xgoal with
probability one as the number of iterations k goes to infinity.
In doing so, our next result is critical as it provides conditions
under which there exist neighborhoods around a CLF-CBF
compatible path for which points of two consecutive neigh-
borhoods can be connected with a CLF-CBF-based controller.

Lemma VI.2. (Compatibility in Neighboring Vertices): Let
A = {xi}Na

i=1, Na ∈ Z>0, be a CLF-CBF compatible path
such that there exists δclear > 0 with B(xi, δclear) ⊂ F for all
i ∈ {2, . . . , Na}. Let N1 = {xinit}. For each i ∈ {2, . . . , Na},
assume that there exist sets Ni, with xi ∈ Ni, and Γ̂i, with
Γi ⊂ Γ̂i (and Γi defined as in Definition V.1), satisfying the
following properties:

(i) for each y ∈ Ni, there exists a CLF Vy : Γ̂i → R
with respect to y in Γ̂i (with associated positive definite
function Wy) and a bounded controller ûy : Γ̂i → Rm

satisfying the corresponding CLF condition in Γ̂i;
(ii) there exists a bounded controller u∗i : Γ̂i ∩ F → Rm

that satisfies the constraints in (21) for all points in Γ̂i

and, for each y ∈ Ni,

|(∇Vy(x)−∇Vi(x))T (f(x)+g(x)u∗i (x))|
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< Wi(x), (24)

for all x ∈ Z = {z ∈ F : ∃l ∈ [M ] s.t. d(z,Ol) ≤
δclear
2 };

(iii) for each y2 ∈ Ni and y1 ∈ Ni−1, Γy1,y2
:= {x ∈ Rn :

Vy2
(x) ≤ Vy2

(y1)} ⊂ Γ̂i;
(iv) whenever xnew ∈ Ni, global solutions to the optimization

problems (6) and (7) in COMPATIBILITY are found.
Then, for each i ∈ {2, . . . , Na}, y2 ∈ Ni, and y1 ∈
Ni−1, there exists a set of extended class K∞ func-
tions {ᾱi,l}Ml=1 and σ̄ > 0 (both dependent on y1,
y2) such that, by taking W σ̄

y2
(x) = σ̄Wy2(x), it holds

that COMPATIBILITY(y1, y2, 1, {hl, ᾱi,l}Ml=1, Vy2
,W σ̄

y2
) =

True.

Proof. Given i ∈ {2, . . . , Na}, y2 ∈ Ni, and y1 ∈ Ni−1, our
goal is to show that there exists a set of extended class K∞
functions {ᾱi,l}Ml=1 and a sufficiently small σ̄ > 0 such that

min
u∈Rm

1

2
∥u∥2 , (25)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −ᾱi,l(hj,l(x)),

∀j ∈ Il(x), l ∈ [M ],

∇Vy2(x)
T (f(x) + g(x)u) + σ̄Wy2(x) ≤ 0,

is feasible for all x ∈ Γy1,y2
∩ F . Figure 1 provides a visual

aid for the argument that follows. The set Γy1,y2
is depicted

in red, the sets Ni in blue, Z in light purple, and the obstacles
{Ol}Ml=1 in green. For convenience, we let Ty1,y2

= Γy1,y2
∩Z

(depicted in dark purple).
Feasibility on (Γy1,y2

\Ty1,y2
)∩F : Since Ty1,y2

contains all
points that are closer than δclear

2 from the boundary, there exists
h0 > 0 such that hj,l(x) > h0 for all x ∈ (Γy1,y2

\Ty1,y2
)∩F ,

l ∈ [M ] and j ∈ Il(x). Therefore, by taking α∗
i,l > 0, with

α∗
i,l >

sup
x∈(Γy1,y2

\Ty1,y2
)∩F,

j∈Il(x)

|Lfhj,l(x) + Lghj,l(x)ûy2
(x)|

h0
,

for each l ∈ [M ] (which exists because ûy2
is bounded on Γ̂i

by (i)), it holds that

Lfhj,l(x) + Lghj,l(x)ûy2(x) + α∗
i,lhj,l(x) ≥ 0,

∀j ∈ Il(x), l ∈ [M ],

∇Vy2(x)
T (f(x) + g(x)ûy2(x)) + σWy2(x) ≤ 0,

for all x ∈ (Γy1,y2\Ty1,y2)∩F and σ ∈ (0, 1), where we have
used that ûy2

satisfies the CLF condition for Vy2
by (i).

Feasibility on Ty1,y2
: From (ii), there exists a bounded

controller u∗i satisfying the constraints in (21) for all x ∈ Γ̂i.
Since Γy1,y2

⊂ Γ̂i, cf. (iii), u∗i satisfies the constraints in (21)
for all x ∈ Γy1,y2 . Moreover, since (24) holds for all x ∈ Z
(note that this is only possible because B(xi, δclear) ⊂ F and
therefore xi /∈ Z , which means that the right-hand side of (24)
is strictly positive), by (ii) it follows that

∇Vy2(x)
T (f(x) + g(x)u∗i (x)) < 0,

for all x ∈ Ty1,y2 . Since Z is compact, this implies that there
exists σ̄ ∈ (0, 1) sufficiently small such that

Lfhj,l(x) + Lghj,l(x)u
∗
i (x) + αi,l(hj,l(x)) ≥ 0,

∀j ∈ Il(x), l ∈ [M ],

∇Vy2
(x)T (f(x) + g(x)u∗i (x)) + σ̄Wy2

(x) ≤ 0.

for all x ∈ Ty1,y2 .
Hence, by taking ᾱi,l as an extended class K∞ func-

tion such that ᾱi,l(s) > max{αi,l(s), α
∗
i,ls} for all

s ≥ 0, and σ̄ ∈ (0, 1) sufficiently small as described
above, (25) is feasible for all x ∈ Γy1,y2

∩ F . Since
COMPATIBILITY finds the global solutions of the op-
timization problems (6) and (7), cf. (iv), it follows that
COMPATIBILITY(y1, y2, 1, {hl, ᾱi,l}Ml=1, Vy2

,W σ̄
y2
) = True

(note that since (25) includes CBF constraints for l ∈ [M ],
this argument is valid independently of the set L found by
solving (23)).

Fig. 1: Visual aid for the arguments described in the proof of Lemma VI.2.

Remark VI.3. (Verification of Assumptions of Lemma VI.2 for
Specific Classes of Systems): For fully actuated systems, the
set Ni in Lemma VI.2 can be taken as a ball centered at the
waypoint xi. As mentioned in Remark V.2, for such systems,
Vy(x) =

1
2 ∥x− y∥

2 is a CLF for any y ∈ Rn. Moreover, we
can take Wy(x) = ∥x− y∥2 and the controller û : Rn → Rn

defined as û(x) = − (x−y2)
T f(x)+∥x−y2∥2

∥g(x)T (x−y2)∥2 g(x)T (x − y2) is

such that (x − y2)T (f(x) + g(x)û(x)) + ∥x− y2∥2 ≤ 0 for
all x ∈ Γy1,y2 and is bounded, since

∥û(x)∥ ≤ ∥x− y2∥ (∥f(x)∥+ ∥x− y2∥)
∥g(x)T (x− y2)∥∥∥g(x)−1g(x)(x− y2)

∥∥ (∥f(x)∥+ ∥x− y2∥)
∥g(x)T (x− y2)∥

≤
∥∥g(x)−1

∥∥ ∥x− y2∥ .
Given that an explicit expression for the CLF is available, the
conditions (ii), (iii) in Lemma VI.2 can be verified directly
and one can choose the radius of the balls defining Ni to
satisfy them. Furthermore, Propositions IV.6 and IV.7 provide
two settings where condition (iv) holds.

A similar argument can be made for the double integrator
in dimension 2k ∈ Z>0. As mentioned in Remark V.2, in
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that case only the points of the form (xf , 0k) ∈ R2k are
stabilizable. Hence, the sets Ni in Lemma VI.2 can be taken in
the form Ni := {(x, 0k) ∈ R2k : ∥x− xf∥ < νi} for some
νi > 0. Furthermore, one can use the explicit expression of the
CLF provided in Section IV-D and choose the parameters νi in
order to verify the rest of the assumptions in Lemma VI.2. •

In general, if the neighborhoodNi around xi in Lemma VI.2
is sufficiently small and ∇Vy is continuous in y (with the
assumption that Vxi = Vi), the left-hand side of (24) can
be made sufficiently small so that the inequality holds. Note
that Assumptions (i), (iii), and (iv) are not restrictive and
hold in several cases of interest, as outlined in Remark VI.3.
Overall, the assumptions in Lemma VI.2 ensure that there
exist neighborhoods around every waypoint of a CLF-CBF
compatible path such that the controller obtained as the
solution of (21) can connect a point from each neighborhood
to any point in the neighborhood of the next waypoint. We next
leverage this property to show the probabilistic completeness
of C-CLF-CBF-RRT.

Proposition VI.4. (Probabilistic Completeness of
C-CLF-CBF-RRT): Suppose that there exists a CLF-
CBF compatible path A = {xi}Na

i=1, Na ∈ Z>0, and suppose
that all the assumptions in Lemma VI.2 regarding A hold.
Further suppose that

(i) there exists a positive probabiliy pi that
RANDOM STATE returns a point from Ni;

(ii) for each y ∈ Ni, FIND CLF returns Vy and Wy (as
defined in item (i) of Lemma VI.2);

(iii) the extended class K∞ functions {αi,l}i∈[Na],l∈[M ]

in (21) are upper bounded by linear extended class K∞
functions, i.e., there exist α̂i,l > 0 for i ∈ [Na] and
l ∈ [M ] such that αi,l(s) ≤ α̂i,ls for all s ≥ 0;

(iv) the steering parameter η in NEW STATE is such that
η > max

i∈[Na−1]
max

y2∈Ni+1,y1∈Ni

∥y2 − y1∥.

Then, there exists τ∗ ∈ Z>0 such that if τ > τ∗, the
probability of C-CLF-CBF-RRT (executed with parameters
τ , η, and any set of extended class K∞ functions {αl}l∈[M ])
returning a tree without a vertex in Xgoal tends to zero as the
number of iterations k goes to infinity.

Proof. The proof follows a similar reasoning to [35, Theorem
1] that proves probabilistic completeness for GEOM-RRT.
Let i ∈ [Na − 1]. First, we show that if Ni contains a
vertex xnear from the tree T in C-CLF-CBF-RRT, then
with probability pi > 0 in the next iteration a vertex will be
added from Ni+1. To see this, note that by assumption there
exists a probability pi > 0 that the function RANDOM STATE
returns a point xrand from Ni+1. Given (iv), the distance
between xnear ∈ Ni and xrand ∈ Ni+1 is less than η,
and therefore xnew = xrand. Now, Lemma VI.2 ensures
that there exists a set of extended class K∞ functions
{ᾱi,l}Ml=1, a CLF Vxrand with respect to xrand and a positive
definite function W σ̄

xrand
with respect to xrand such that

COMPATIBILITY(xnear, xrand, τ, {hl, ᾱi,l}Ml=1, Vxrand ,W
σ̄
xrand

)
returns True. Moreover, since the functions {αi,l}Ml=1

are upper bounded by linear extended class K∞ functions
with slopes {α̂i,l}Ml=1, by performing the updates in the
extended class K∞ functions described in Section V-C.3,

it follows that there exists τ∗ sufficiently large such that if
τ > τ∗, the updated linear extended class K∞ functions
used in COMPATIBILITY have slopes larger than {α̂i,l}Ml=1

respectively and the coefficient multiplying Wxrand is smaller
than σ̄, which makes the COMPATIBILITY function
return True. This means that xrand is added to T with the
corresponding edge from xnear to xrand, as stated.

Next, in order for C-CLF-CBF-RRT to reach Xgoal from
xinit, the algorithm needs to successively select points from
Ni+1 as described previously for i ∈ [Na−1]. For k iterations
of C-CLF-CBF-RRT, this stochastic process can be described
as k Bernouilli trials [46, Definition 2.5] with success proba-
bilities {pi}Na−1

i=1 . The algorithm reaches Xgoal from xinit after
Na − 1 successful outcomes. Let p := min

i∈[Na−1]
pi. Using the

same argument as in [35, Theorem 1], the probability that this
stochastic process does not have Na − 1 successful outcomes
after k iterations is smaller than (Na−1)!

(Na−2)!k
Na−1e−pk. This

means that the probability of C-CLF-CBF-RRT returning a
tree without a vertex in Xgoal tends to zero as the number of
iterations k goes to infinity.

Remark VI.5. (Verification of Assumptions of Proposi-
tion VI.4): As mentioned in Remark VI.3, for fully actuated
systems the set Ni in Lemma VI.2 can be taken as a ball
centered at the waypoint xi. If RANDOM STATE samples R
uniformly, it returns a point in such ball with probability
equal to its relative volume in R. Furthermore, in this case
FIND CLF can simply return Vy(x) = 1

2 ∥x− y∥
2 and

Wy(x) = ∥x− y∥2 for any y ∈ Ni. For the double integrator
in dimension 2k ∈ Z>0, as mentioned in Remark VI.3,
the sets Ni in Lemma VI.2 can be taken in the form
Ni := {(x, 0k) ∈ R2k : ∥x− xf∥ < νi} for some
νi > 0 and if RANDOM STATE samples uniformly points of
the form (xf , 0k) ∈ R2k, then (i) in Proposition VI.4 holds.
Furthermore, FIND CLF can return the explicit expression
of the CLF used in Proposition IV.10. We note also that
Assumption (iii) is not restrictive, and Assumption (iv) holds
by taking the parameter η sufficiently large. •

Remark VI.6. (Computational Complexity of
C-CLF-CBF-RRT): The computational complexity of
C-CLF-CBF-RRT is the same as GEOM-RRT except for
the added complexity of the COMPATIBILITY function. In
general, the optimization problems (6), (7), and (23) required
by COMPATIBILITY can be non-convex, which makes
them not computationally tractable. However, in the setting
considered in Proposition IV.6, the worst-case complexity of
COMPATIBILITY is that of solving τ QCQPs, for which
efficient heuristics exist [38]. In the setting considered in
Proposition IV.7, (6), (7), and (23) can be solved in closed
form, which means that C-CLF-CBF-RRT has the same
computational complexity as GEOM-RRT. •

Remark VI.7. (Controller Execution): Given a CLF-CBF
compatible path A, executing the controller (21) has the
agent converge from one waypoint to the next asymptotically.
However, under the assumptions of Proposition VI.4, there
exist neighborhoods around the waypoints of A such that any
two points of two consecutive neighborhoods can be connected
with a CLF-CBF controller (possibly, with adjusted CLF, and
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extended class K∞ functions, cf. Lemma VI.2). Therefore, by
executing the controller (21) for a sufficiently large but finite
time, the agent can visit these different neighborhoods and
trace a path whose waypoints are close to those of A. •

Remark VI.8. (C-CLF-CBF-RRT for Higher-Relative De-
gree Systems): C-CLF-CBF-RRT can be adapted to the
setting where h is a HOCBF, cf. Section IV-D, with the
following modifications:

(i) xinit and Xgoal lie in C ∩ C2 ∩ . . . ∩ Cm;
(ii) RANDOM STATE returns states from C ∩ C2 ∩ . . . ∩ Cm

(or a subset of it consisting of stabilizable points);
(iii) COMPATIBILITY employs the conditions described in

Proposition IV.9 instead of those in Proposition IV.1 to
check the compatibility of CLFs and HOCBFs. •

VII. SIMULATION AND EXPERIMENTAL VALIDATION

Here we illustrate the performance of C-CLF-CBF-RRT in
simulation and hardware experiments. Throughout the section,
we deal with a differential-drive robot following the unicycle
dynamics:

ẋ = v cos(θ), (26a)
ẏ = v sin(θ), (26b)

θ̇ = ω, (26c)

where s = [x, y] ∈ R2 is the position of the robot, θ its
heading, and v and ω are its linear and angular velocity control
inputs, respectively. Following [42, Section IV], we set

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, p =

[
x
y

]
+ lR(θ)e1,

where e1 = [1, 0]T and l > 0 is a design parameter. This
defines p as a point orthogonal to the wheel axis of the robot.
Moreover, let

L =

[
1 0
0 1/l

]
.

Even though the dynamics (26) are nonlinear, it follows that
ṗ = R(θ)L−1u, where u = [v, w]T . By defining the new
control input ũ = R(θ)L−1u, the state p follows single
integrator dynamics. The original angular and linear velocity
inputs can be easily obtained from ũ as u = LR(θ)−1ũ. Since
p can be made arbitrarily close to [x, y] by taking l sufficiently
small, in what follows we consider p as our state variable.

A. Computer Simulations
We have tested C-CLF-CBF-RRT in different simulation

environments in a high-fidelity Unity simulator on an Ubuntu
PC with Intel Core i9-13900K 3 GHz 24-Core processor. We
utilize the function minimize from the library SCIPY [47]
to solve the optimization problems in the COMPATIBILITY
function. The robots used in the simulation are Clearpath
Husky1 robots, which have the same LIDAR and sensor
capabilities as the real ones, and these are used to run a SLAM
system that allows each robot to localize itself in the environ-
ment and obtain its current state, which is needed to implement

1Spec. sheets for the Husky and Jackal robots can be found at
https://clearpathrobotics.com

the controller from (21). The first simulation environment
consists of a series of red obstacles whose projection on the
navigation plane is either a circle or a polytope. The second
simulation consists of an environment with different rooms.
The different walls are modelled as obstacles using nonsmooth
CBFs, given that their projection on the navigation plane are
quadrilaterals. To ensure that the whole physical body of the
robot remains safe, we add a slack term to the CBF that takes
into account the robot dimensions. For example, for a circular
obstacle with center at xc ∈ R2 and radius r > 0, and a
circular robot with radius r0 > 0, the CBF can be taken as
h(x) = ∥x− xc∥2 − (r+ r0)

2. Both simulation environments
have dimensions 20m × 50m, and in each of them the
projection of the obstacles in the navigation plane is either a
circle or a polytope, so the COMPATIBILITY function runs
efficiently (cf. Section IV). Figure 2 shows the tree generated
by C-CLF-CBF-RRT in both simulation experiments, as well
as the corresponding trajectory executed by the robot using the
controller obtained as the solution of (21), which successfully
reaches the end goal while remaining collision-free. In both
simulation environments, we use αl(s) = 5s for all l ∈ [M ]
and η = 2m. Once the robot is within 0.5m of a given
waypoint, we switch the controller so that it steers the robot
towards the next waypoint.

B. Hardware Experiments

We have also tested C-CLF-CBF-RRT in a physical envi-
ronment using a Clearpath Jackal robot. The robot is equipped
with GPS, IMU and LIDAR sensors, which are used to run
a SLAM system to localize its position in the environment
and execute the controller from (21). The environment, with
dimensions 4m × 9m, consists of different obstacles whose
projection on the navigation plane is either a circle or a
polytope. We ensure the whole physical body of the robot
remains safe using a slack term in the CBF formulation,
as described in Section VII-A. Figure 3(a) shows the tree
generated by C-CLF-CBF-RRT as well as the trajectory
executed by the robot, successfully reaching its goal. We use
αl(s) = 5s for all l ∈ [M ] and choose η = 2m. Once the robot
is within 0.5m of a given waypoint, we switch the controller
so that it steers the robot towards the next waypoint.

C. Comparison with GEOM-RRT

Here we compare the performance of C-CLF-CBF-RRT
with GEOM-RRT in both the simulation and hardware environ-
ments. Figure 3(b) shows the tree generated by GEOM-RRT as
well as the trajectory executed by the robot in the hardware
environment using the controller obtained from (21). One can
observe that the trajectory generated by the robot is unable
to reach the end goal and stops rather early, at a point where
the optimization problem (21) becomes infeasible. This occurs
because GEOM-RRT does not take into account the dynamic
feasibility of the path it generates.

We should point out that the steering parameter η critically
affects the performance of GEOM-RRT. To show this, we run
various executions of GEOM-RRT in the simulation environ-
ment with obstacles depicted in Figure 2(a). Table I shows that
smaller values of η yield a higher percentage of feasible paths



13

(a) Environment with obstacles

(b) Environment with rooms

Fig. 2: (a) First and (b) second simulation environment experiments. Tree
generated by C-CLF-CBF-RRT (black), waypoints of the returned path (dark
yellow) and trajectory followed by the robot using the controller from (21)
(red). The starting point is the green dot and the end goal is the purple dot. In
each environment, the robot successfully visits the waypoints while avoiding
collisions with obstacles.

but with a higher average execution time. For comparison, the
average execution time of C-CLF-CBF-RRT, whose paths
are always dynamically feasible, for the same simulation
environment and with η = 4m, is 8.72 seconds. To match the
dynamic feasibility of the produced paths, GEOM-RRT has to
be run with η = 1m, at a significantly higher computational
cost.

η (meters) Percentage of
feasible paths

Average execution
time (seconds)

1 100% 154.36
2 90% 140.62
4 50% 130.62
8 30% 4.83

16 5% 1.84

TABLE I: Comparison of the percentage of feasible paths (i.e., paths for which
the controller in (5) steers the robot from the initial point to the end goal by
following the waypoints generated by the path) and the average execution
time of GEOM-RRT (over 20 executions). The paths are generated for the
simulation environment with obstacles in Figure 2(a).

D. Comparison with CBF-RRT

Here we compare C-CLF-CBF-RRT with CBF-RRT, a
sampling-based motion planning algorithm proposed in [30]

(a) C-CLF-CBF-RRT

(b) GEOM-RRT

Fig. 3: Execution of (a) C-CLF-CBF-RRT and (b) GEOM-RRT in the
hardware experiment. In both plots, tree generated by the corresponding
algorithm (black), waypoints of the returned path (dark yellow), and trajectory
followed by the robot (red) using the controller from (21) (red). The starting
point is the green dot and the end goal is the purple dot. The trajectory
executed by the robot under C-CLF-CBF-RRT reaches its goal safely,
whereas it fails under GEOM-RRT because it quickly encounters a point where
the optimization problem (21) is infeasible.

that also employs control barrier functions. Initially, CBF-RRT
starts with a tree consisting of a single node in xinit. Then, each
iteration of CBF-RRT operates as follows. First, it randomly
samples a vertex x0 from the current tree. Next, it generates
a reference input, e.g., one steering the robot from x0 to the
goal set Xgoal (cf. [30, Section 5] for more details). Finally,
for a fixed period of time T0, at every state it executes the
controller closest to the reference input that satisfies the CBF
condition. The state xnew reached by the robot after this period
of time T0 gets added to the tree.

We have ran multiple times C-CLF-CBF-RRT and
CBF-RRT in the simulation environment with obstacles of
Figure 2(a). Note that CBF-RRT is more computationally
costly, as it requires running a trajectory for every new node
added to the tree. Furthermore, this trajectory is generated by
a controller that is obtained as the solution of an optimization
problem at every point. In contrast, C-CLF-CBF-RRT only
requires solving a single optimization problem (and, in the
cases discussed in Section IV-C, not even that, since an
algebraic check is enough) for every new node added to the
tree. For example, if T0 is small (e.g., T0 = 5), the average
execution time of CBF-RRT exceeds one minute. For T0 = 15,
the average execution time of CBF-RRT (over 10 different
runs) is 384.58 seconds. The average execution time is similar
for T0 = 10, T0 = 20. These numbers seem to indicate that
smaller values of T0 find a feasible path more rapidly, but such



14

paths contain a larger number of waypoints. In contrast, larger
values of T0 lead to paths with a smaller number of waypoints
but require more time to be found. In comparison, the average
execution time of C-CLF-CBF-RRT with the same initial
point and end goal (and with αl(s) = 5s for all l ∈ [M ]
and η = 4m) is 8.72 seconds, almost two orders of magnitude
faster.

VIII. CONCLUSIONS

We have introduced C-CLF-CBF-RRT, a sampling-based
motion planning algorithm that generates dynamically feasible
collision-free paths from an initial point to an end goal. The al-
gorithm creates a sequence of waypoints and results in a well-
defined CLF-CBF-based controller that generates trajectories
guaranteed to be safe and to sequentially visit the waypoints.
These guarantees are based on a result of independent interest
that shows that the problem of verifying whether a CLF and
a BNCBF are compatible in a set of interest can be solved
by finding the optimal value of an optimization problem. For
systems with linear dynamics, quadratic CLFs, and CBFs of
polytopic obstacles, this optimization problem is a QCQP, and
for CBFs of circular obstacles, it can be solved in closed form,
ensuring the efficient execution of C-CLF-CBF-RRT. Finally,
we have shown that C-CLF-CBR-RRT is probabilistically
complete and can be generalized to systems where safety
constraints have a high relative degree. Simulations and hard-
ware experiments illustrate the performance and computational
benefits of C-CLF-CBR-RRT. Future work will explore the
extension of the results to other sampling-based algorithms
(e.g., RRT*, bidirectional RRT), identify other classes of
systems and safe sets for which the process of checking
CLF-CBF compatibility can be done efficiently, and consider
systems under uncertainty, both in the robot dynamics and the
obstacles in the environment.
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[17] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462–467,
2007.

[18] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[19] L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[20] P. Mestres and J. Cortés, “Optimization-based safe stabilizing feedback
with guaranteed region of attraction,” IEEE Control Systems Letters,
vol. 7, pp. 367–372, 2023.

[21] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier functions
based quadratic programming with application to adaptive cruise con-
trol,” in IEEE Conf. on Decision and Control, 2014, pp. 6271–6278.

[22] S. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with applications to bipedal robot walking,” in
American Control Conference, Chicago, USA, July 2015.

[23] M. F. Reis, A. P. Aguilar, and P. Tabuada, “Control barrier function-
based quadratic programs introduce undesirable asymptotically stable
equilibria,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 731–736,
2021.

[24] X. Tan and D. V. Dimarogonas, “On the undesired equilibria induced
by control barrier function based quadratic programs,” Automatica, vol.
159, p. 111359, 2024.

[25] Y. Chen, P. Mestres, E. Dall’Anese, and J. Cortés, “Characterization of
the dynamical properties of safety filters for linear planar systems,” in
IEEE Conf. on Decision and Control, Milan, Italy, 2024, to appear.

[26] W. S. Cortez and D. V. Dimarogonas, “On compatibility and region
of attraction for safe, stabilizing control laws,” IEEE Transactions on
Automatic Control, vol. 67, no. 9, pp. 7706–7712, 2022.

[27] P. Ong and J. Cortés, “Universal formula for smooth safe stabilization,”
in IEEE Conf. on Decision and Control, Nice, France, Dec. 2019, pp.
2373–2378.

[28] A. Ahmad, C. Belta, and R. Tron, “Adaptive sampling-based motion
planning with control barrier functions,” in IEEE Conf. on Decision and
Control, Cancun, Mexico, Dec. 2022, pp. 4513–4518.

[29] K. Majd, S. Yaghoubi, T. Yamaguchi, B. Hoxha, D. Prokhorov, and
G. Fainekos, “Safe navigation in human occupied environments using
sampling and control barrier functions,” in IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, Prague, Czech Republic, 2021, pp. 5794–
5800.

[30] G. Yan, B. Vang, Z. Serlin, C. Belta, and R. Tron, “Sampling-based
motion planning using control barrier functions,” in International Con-
ference on Automation, Control and Robots, Prague, Czech Republic,
2019, pp. 22–29.



15

[31] A. Manjunath and Q. Nguyen, “Safe and Robust Motion Planning for
Dynamic Robotics via Control Barrier Functions,” in IEEE Conf. on
Decision and Control, Austin, USA, 2021, pp. 2122–2128.

[32] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Di-
mensional Systems, 2nd ed., ser. TAM. Springer, 1998, vol. 6.

[33] R. A. Freeman and P. V. Kototovic, Robust Nonlinear Control De-
sign: State-space and Lyapunov Techniques. Cambridge, MA, USA:
Birkhauser Boston Inc., 1996.

[34] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth approach to
controller synthesis for Boolean specifications,” IEEE Transactions on
Automatic Control, vol. 66, no. 11, pp. 5160–5174, 2021.

[35] M. Kleinbort, K. Solovey, Z. Littlefield, K. Bekris, and D. Halperin,
“Probabilistic completeness of RRT for geometric and kinodynamic
planning with forward propagation,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. i–vii, 2019.

[36] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
[37] P. Mestres, A. Allibhoy, and J. Cortés, “Regularity properties of

optimization-based controllers,” European Journal of Control, 2024, to
appear.

[38] J. Park and S. Boyd, “General heuristics for nonconvex
quadratically constrained quadratic programming,” arXiv preprint
arXiv:1703.07870v2, 2017.

[39] W. Xiao and C. Belta, “Control barrier functions for systems with high
relative degree,” in IEEE Conf. on Decision and Control, Nice, France,
Dec. 2019, pp. 474–479.

[40] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[41] G. Yang, C. Belta, and R. Tron, “Self-triggered control for safety

critical systems using control barrier functions,” in American Control
Conference, Philadelphia, USA, Jul. 2019, pp. 4454–4459.

[42] P. Glotfelter, I. Buckley, and M. Egerstedt, “Hybrid nonsmooth barrier
functions with applications to provably safe and composable collision
avoidance for robotic systems,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1303–1310, 2019.

[43] P. Mestres, C. Nieto-Granda, and J. Cortés, “Distributed safe navigation
of multi-agent systems using control barrier function-based controllers,”
IEEE Robotics and Automation Letters, vol. 9, no. 7, pp. 6760–6767,
2024.

[44] W. Tan, “Nonlinear control analysis and synthesis using sum-of-squares
programming,” Ph.D. dissertation, University of California, Berkeley,
2006.

[45] Y.-C. Chang, N. Roohi, and S. Gao, “Neural Lyapunov control,” in Con-
ference on Neural Information Processing Systems, vol. 32, Vancouver,
Canada, Dec. 2019, pp. 3240–3249.

[46] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes:
A Friendly Introduction for Electrical and Computer Engineers. John
Wiley and Sons, 2004.

[47] P. Virtanen, R. Gommers, T. E. Oliphant et al., “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020.

APPENDIX

The following result shows that the problem of checking
whether the optimization problem (22) is feasible can be
simplified by including only the constraints associated with
the obstacles that intersect with Θ.

Lemma A.1. (Reduction of the set of CBFs): Let xnear ∈ Rn

and define Θ = {x ∈ Rn : V (x) ≤ V (xnear)}. Let L := {l ∈
[M ] : Θ ∩ Cl(Ol) = ∅}. Suppose that there exists a set of
extended class K∞ functions {αl}l∈L such that the problem

min
u∈Rm

1

2
∥u∥2 (27)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −αl(hj,l(x)),

∀j ∈ Il(x), l ∈ L,
LfV (x) + LgV (x)u+W (x) ≤ 0.

is feasible for all x ∈ Θ ∩ F and there exists a bounded
controller û : Θ ∩ F → Rm satisfying the constraints in (27)
for all x ∈ Θ∩F . Then, there exists a set of extended class K∞
functions {αl}l∈[M ] such that (22) is feasible for all x ∈ Θ∩F .

Proof. Note that since Cl(Ol) is a closed set and Θ∩Cl(Ol) =
∅ for all l ∈ [M ]\L, there exists d > 0 such that hl(x) ≥ d
for all l ∈ [M ]\L and x ∈ Rn. Now, take α̂ such that

α̂ >

sup
x∈Θ∩F

|Lfhj,l(x) + Lghj,l(x)û(x)|

d

for all l ∈ [M ]\L and j ∈ Il(x). Note that such α̂ exists
because û is bounded and Θ is compact. Now, û(x) is also
feasible for (22) for any x ∈ Θ∩F by taking αl(s) = α̂s for
all l ∈ [M ]\L.
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