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Abstract— Koopman operator theory and Willems’ fun-
damental lemma both can provide (approximated) data-
driven linear representation for nonlinear systems. How-
ever, choosing lifting functions for the Koopman operator is
challenging, and the quality of the data-driven model from
Willems’ fundamental lemma has no guarantee for gen-
eral nonlinear systems. In this paper, we extend Willems’
fundamental lemma for a class of nonlinear systems that
admit a Koopman linear embedding. We first characterize
the relationship between the trajectory space of a nonlinear
system and that of its Koopman linear embedding. We then
prove that the trajectory space of Koopman linear embed-
ding can be formed by a linear combination of rich-enough
trajectories from the nonlinear system. Combining these
two results leads to a data-driven representation of the
nonlinear system, which bypasses the need for the lifting
functions and thus eliminates the associated bias errors.
Our results illustrate that both the width (more trajectories)
and depth (longer trajectories) of the trajectory library are
important to ensure the accuracy of the data-driven model.

Index Terms— Data-driven control; Willems’ Fundamen-
tal Lemma; Nonlinear systems; Koopman Lifting

I. INTRODUCTION

Designing controllers for nonlinear systems with approx-
imated linear representations has gained increasing interest.
Linear approximations enable the utilization of linear system
tools and facilitate computationally efficient model predictive
control schemes. Both Koopman operator theory [1] and
Willems’ fundamental lemma [2] can be applied to construct
(approximated) linear representations of nonlinear systems
from input and output data, which have shown promising
performance in many practical applications [3]–[6].

Koopman operator theory is originally developed for au-
tonomous systems with no input [1]. There are different Koop-
man operator schemes to handle controlled nonlinear systems,
e.g., taking the control sequence as an extended state [7] or
considering the control sequence as extra parameters [8]. One
key step is to lift the state space into a higher-dimensional
space, in which the lifted state evolves (approximately) in a
linear way. This idea leads to a rigorous framework of Koop-
man operator theory for autonomous systems [9], and ex-
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tensions for controlled systems are under extensive develop-
ment [10]. With (approximated) linear representations using
the Koopman operator available, many control techniques have
been applied, such as linear optimal control and model pre-
dictive control [7], [10]. In all these methods, the accuracy of
the Koopman-based approximations depends critically on the
lifting functions, and choosing the right set is challenging [11].

Willems’ fundamental lemma for linear time-invariant (LTI)
systems shows that a rich-enough trajectory library is sufficient
to produce a direct data-driven representation [2] of the system
evolution. Its wide range of applicability has motivated the
search for extensions, including special classes of nonlinear
systems, such as Hamerstrin and Wiener systems [12], bilinear
systems [13], [14], and certain polynomial systems [15]. This
data-driven representation can be utilized for linear controller
design [16] and also model predictive control [17]. When deal-
ing with non-deterministic or nonlinear systems, it becomes
necessary to include suitable regularization terms in predictive
control to ensure its performance and increase the size of the
trajectory library to construct a good data-driven representa-
tion [18]–[20]. Although the benefits of increasing the width
of the trajectory library (i.e., collecting more trajectories) are
well-recognized in the literature, the importance of enlarging
its depth (i.e., extending the trajectory length) is less discussed.

In this paper, we aim to develop an extended Willems’ fun-
damental lemma for nonlinear systems that admit a lifted linear
representation under the Koopman operator, which we call
Koopman linear embedding (see Definition 1). Unlike previous
studies [7], [12]–[14], our direct data representation requires
no prior knowledge of the lifting functions in Koopman linear
embedding. One key idea in our approach is to establish an
exact relationship between trajectory spaces of the nonlinear
system and its associated Koopman linear embedding. It is
known that the Koopman linear embedding has a larger
trajectory space. Still, we provide a necessary and sufficient
condition for the intersection of these two spaces (Theorem 1).
Motivated by [21, Def. 1], we introduce a new persistent
excitation for nonlinear systems which accounts for the lifted
state in Koopman linear embedding. We show the behavior of
Koopman linear embedding can be fully captured by a linear
combination of rich enough trajectories from the nonlinear
system (Theorem 2). We finally establish a data-driven repre-
sentation adapted from Willems’ fundamental lemma for non-
linear systems with a Koopman linear embedding (Theorem 3).
Thus, we can directly utilize the simple-to-build data-driven
representation and bypass the need to choose lifting functions.

Our data-driven representation can be directly utilized in
predictive control. Our approach also illustrates the importance



of the width and depth of the trajectory library, which depends
on the “hidden” dimension of the Koopman linear embedding.
Both collecting more trajectories (increasing the width) and
utilizing longer initial trajectories (increasing the depth) are
critical for the data-driven representation of nonlinear systems.

The remainder of this paper is structured as follows. Sec-
tion II reviews Koopman linear embedding and Willems’
fundamental lemma. Section III shows that a Koopman linear
embedding of the nonlinear system leads to a direct data-driven
representation. Section IV validates our theoretical findings via
numerical simulations. We conclude the paper with Section V.

Notation: Given a series of vectors a1, . . . , an and matrices
A1, . . . , An with the same column dimension, we denote
col(a1, . . . , an) :=

[
aT1 , . . . , a

T
n

]T
and col(A1, . . . , An) :=[

AT
1 , . . . , A

T
n

]T
. We denote the quadratic form aTXa as ∥a∥2X

and diag(b1, ..., bn) as a diagonal matrix with b1, ..., bn at its
diagonal entries. We use ∥A∥F to represent the Frobenius
norm of the matrix A. Collecting a length-T data sequence
v = col(v0, . . . , vT−1), we represent vp:q := col(vp, . . . , vq)
where p, q ∈ Z and T > q ≥ p ≥ 0.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Koopman linear models for nonlinear systems
Consider a discrete-time nonlinear system

xk+1 = f(xk, uk), yk = g(xk, uk), (1)
where xk ∈ Rn, uk ∈ Rm and yk ∈ Rp are the state, input,
and output of the system at time k, respectively. One key idea
of Koopman operator is to lift the state xk of the original
nonlinear system to a higher-dimensional space via a set of lift-
ing functions (often referred to as observables) [9], where the
evolution of these observables becomes (approximately) linear.

In this paper, we consider an important case of Koopman
linear embedding for nonlinear systems.

Definition 1 (Koopman Linear Embedding): The nonlinear
system (1) admits a Koopman linear embedding if there
exists a set of linearly independent lifting functions ϕ1(·),
. . . , ϕnz(·) : Rn → R such that the lifted state

Φ(xk) := col(ϕ1(xk), . . . , ϕnz(xk) ∈ Rnz , (2)
propagates linearly along all trajectories of (1) and the output
yk is a linear map of Φ(xk) and uk.

For a nonlinear system admitting a Koopman linear embed-
ding (2), the new lifted state zk = Φ(xk) ∈ Rnz satisfies

zk+1 = Azk +Buk, yk = Czk +Duk, (3)
with matrices A,B,C and D having appropriated dimensions.
Note that we normally have nz ≫ n and the matrix pair (A,B)
and (C,A) in (3) may not be controllable or observable.

In case that an exact Koopman linear embedding does not
exist, many existing studies (especially in predictive control)
often use the linear model (3) to approximate the dynamics of
the observables (2); see [7] for details.

After choosing the observables (2), we can compute the ma-
trices A,B,C and D for the linear model (3) using extended
dynamic model decomposition (EDMD) [22]. We organize the
measured input-state-output data sequence of (1) as

X =
[
x0, . . . , xnd−2

]
, X+ =

[
x1, . . . , xnd−1

]
,

U =
[
u0, . . . , und−2

]
, Y =

[
y0, . . . , ynd−2

]
.

With the lifting functions (2), we compute the lifted state as
Z =

[
Φ(x0), . . . ,Φ(xnd−2)

]
, Z+ =

[
Φ(x1), . . . ,Φ(xnd−1)

]
.

Then, we obtain the matrices A, B, C and D via two least-
squares approximations:

(A,B) ∈ argmin
A,B

∥Z+ −AZ−BU∥2F ,

(C,D) ∈ argmin
C,D

∥Y − CZ−DU∥2F .
(4)

It is not necessary to collect the data points in sequence
and we can also use data pairs (xi, x

+
i , ui, yi) where x+

i =
f(xi, ui), yi = g(xi, ui), i = 0, . . . , nd−1 (see [7] for details).

The choice of observables affects (4) significantly. Even
if a Koopman linear embedding exists for (1), we may not
know the correct observables (2) for such a Koopman linear
embedding. An inexact choice can lead to significant mod-
eling errors [11]. In the literature, common choices for (2)
include Gaussian kernel, polyharmonic splines, and thin plate
splines [10]. However, none of them can guarantee an exact
linear model even when a Koopman linear embedding exists.

B. Willems’ Fundamental Lemma
Willems’ fundamental lemma is established for linear time-

invariant (LTI) system of the form
xk+1 = A1xk +B1uk, yk = C1xk +D1uk, (5)

where the state, input and output at time k are denoted as
xk ∈ Rñ, uk ∈ Rm̃ and yk ∈ Rp̃, respectively. We consider
system (5) from the behavioral (i.e., trajectory) perspective.
The key idea is that a linear combination of rich enough offline
trajectories of (5) can represent its whole trajectory space.

Let us recall the notion of persistent excitation [2].
Definition 2 (Persistently exciting): The length-T sequence

ω = col(ω0, . . . , ωT−1) is persistently exciting of order L if
its Hankel matrix

HL(ω) =


ω0 ω1 · · · ωT−L
ω1 ω2 · · · ωT−L+1
...

...
. . .

...
ωL−1 ωL · · · ωT−1


has full row rank.

With the pre-collected input-state-output data in sequence,
i.e., ud = col(u0, . . . , und−1), xd = col(x0, . . . , xnd−1) and
yd = col(y0, . . . , ynd−1), the following Willems’ fundamental
lemma is adapted from [23, Theorem 1].

Lemma 1 (Willems’ fundamental lemma): Consider the LTI
system (5). Assume the Hankel matrix formed by its pre-
collected trajectory H0 := col(H1(xd,0:nd−L),HL(ud)) has
full row rank. Then, a length-L input-output data sequence
col(u, y) ∈ R(m̃+p̃)L is a valid trajectory of (5) if and only if
there exists g ∈ Rnd−L+1 such that[

HL(ud)
HL(yd)

]
g =

[
u
y

]
.

Lemma 1 does not require the controllability of (5) since it
directly imposes a full-rank condition on H0 that involves the
state sequence. If (5) is controllable, then persistent excitation
of order L + ñ for the input sequence ud is sufficient to
guarantee the full rank of H0 [2]. Utilizing Lemma 1, we
can build a data-driven representation for system (5). We use
uini = col(uk−Tini , . . . , uk−1) and uF = col(uk, . . . , uk+N−1)



to represent the most recent past input trajectory of length-Tini
and the future input trajectory of length-N where L = Tini+N
(similarly for yini, yF). Let us partition the Hankel matrix by its
first Tini rows (i.e., UP, YP) and the last N rows (i.e., UF, YF) as[

UP
UF

]
:= HL(ud),

[
YP
YF

]
:= HL(yd).

From Lemma 1, col(uini, yini, uF, yF) is a valid trajectory
of (5) if and only if there exists g ∈ Rnd−Tini−N+1 such that

col(UP, YP, UF, YF)g = col(uini, yini, uF, yF). (6)
Furthermore, if (5) is observable and Tini is no smaller than
its observability index, then yF in (6) is unique given an initial
trajectory (uini, yini) and any future input uF [17]. Intuitively,
if (5) is observable, the initial trajectory (uini, yini) allows us to
uniquely determine the corresponding initial state. This data-
driven representation (6) has been widely used in predictive
control [17] with many successful applications [4]–[6].

C. Problem Statement

In this paper, we aim to extend the data-driven representa-
tion (6) from LTI systems to nonlinear systems (1) that admit a
Koopman linear embedding. One may be tempted to directly
apply Willems’ fundamental lemma to the Koopman linear
model (3) and get a similar data-driven representation as (6).
However, there are two unsolved challenges for this process:

1) the Koopman linear model (3) may be neither control-
lable nor observable;

2) the behavior space of the Koopman linear model (6)
is much larger than the behavior space of the original
nonlinear system (1).

We propose two innovations to resolve the challenges above.
1) We first characterize the relationship between the behavior
space of the Koopman linear model (6) and that of the original
nonlinear system (1). A key insight of this characterization
is that observability is not needed for the data-driven repre-
sentation (6) as long as the length of the initial trajectory is
large enough, i.e., the Hankel matrix has a sufficient depth.
2) We introduce a new notion of persistent excitation for
the offline data collection, which has a similar flavor to [21,
Def. 1] that focuses on a special case of affine systems.
With these two technical tools, we establish a direct data-
driven representation in the form of (6) for nonlinear systems
that admit a Koopman linear embedding. This representation
requires no knowledge of the lifting functions (2) (as long
as they exist). Our representation can be directly utilized in
Koopman model predictive control [7], without the need of
identifying the linear model (3). This bypasses the challenging
problem of selecting the lifting functions, with the added
remarkable benefit of eliminating the associated bias errors.

III. FROM KOOPMAN LINEAR EMBEDDINGS TO
DATA-DRIVEN REPRESENTATIONS

In this section, we develop the main technical result that
directly represents the nonlinear system with Koopman linear
embedding using its input and output data. We refer to it as
an extended Willems’ fundamental lemma. We also discuss a
special case of affine systems considered in [21].

A. Two behavior spaces
Consider the space of length-L trajectories for the nonlinear

system (1) and the Koopman linear embedding (3):

B1|L=
{[

u
y

]
∈R(m+p)L | ∃x(0)=x0∈Rn, (1) holds

}
, (7a)

B2|L=
{[

u
y

]
∈R(m+p)L | ∃ z(0)=z0∈Rnz , (3) holds

}
. (7b)

Note that B1 |L is a nonlinear set while B2 |L is a linear
subspace in R(m+p)L. Intuitively, the behavior space of the
Koopman linear embedding is larger than that of the original
nonlinear system. Our first result characterizes the relationship
between these two behavior spaces.

Theorem 1: Consider the nonlinear system (1) and assume
it admits a Koopman linear embedding (3).

1) We have B1|L ⊂ B2|L,∀L ≥ 1, i.e., all trajectories of
system (1) are also trajectories of (3);

2) Let col(u, y) ∈ B2|L, where L > nz. Then, col(u, y) ∈
B1 |L if and only if its leading sequence of length nz
(i.e., col(u0:nz−1, y0:nz−1)) is a valid trajectory of (1).

Theorem 1 reveals that while the space B2|L is larger, we
can characterize its subset corresponding to B1 |L using the
initial leading sub-sequence col(u0:nz−1, y0:nz−1). We need a
technical lemma to prove the second statement in Theorem 1.

Lemma 2: Consider an LTI system (5). Fix an initial trajec-
tory col(u0:L1−1, y0:L1−1) ∈ R(m̃+p̃)L1 of length-L1, where
L > L1 ≥ ñ. Given any subsequent input uL1:L−1 ∈
Rm̃(L−L1) (future input), the subsequent output yL1:L−1 ∈
Rp̃(L−L1) (future output) is unique.

Note that Lemma 2 works for any LTI systems and requires
no observability or controllability. This result is not difficult to
establish and its proof is provided in our technical report [24].

Proof of Theorem 1: The first statement is obvious from
Definition 1. Let col(u, y) ∈ B1|L be arbitrary. By definition,
we can find x0 ∈ Rn such that col(u, y) satisfies the evolution
in (1). Then, with the lifted initial state z0 = Φ(x0) ∈ Rnz ,
col(u, y) satisfies the evolution in (3). Thus, col(u, y) ∈ B2|L.

For the second statement, the “only if” part is trivial as
col(u0:nz−1, y0:nz−1) is part of col(u, y). We here prove “if”
part. Suppose col(u0:nz−1, y0:nz−1) ∈ B1|nz and we let ỹnz:L−1

be the corresponding outputs from the nonlinear system (1) for
the rest of inputs unz:L−1, i.e.,

col(u, y0:nz−1, ỹnz:L−1) ∈ B1|L .

Then, it is clear that col(u, y0:nz−1, ỹnz:L−1) ∈ B2 |L utiliz-
ing the first statement. From Lemma 2, the outputs of the
linear system (3) are uniquely determined by unz:L−1 when
col(u0:nz−1, y0:nz−1) ∈ B2|nz are given. Thus, we must have

ỹnz:L−1 = ynz:L−1,

indicating the whole trajectory satisfies col(u, y)∈B1|L. ■

We might be tempted to estimate an initial state x0 or z0
from col(u0:nz−1, y0:nz−1) ∈ B1|nz . However, since we do not
assume observability of the Koopman linear embedding (3),
the initial state z0 cannot be uniquely determined from
col(u0:nz−1, y0:nz−1). As confirmed in Lemma 2, the unob-
servable part of the initial state does not affect the uniqueness
of the input-output trajectory.



B. Data-driven representation of nonlinear systems
While the trajectory space of the Koopman linear embed-

ding (3) is larger than that of the nonlinear system (1), we can
use the trajectories from (1) (i.e., col(ui

d, y
i
d) ∈ B1 |L, i =

1, . . . , l) that are rich enough to represent B2|L. For this, we
propose the following definition of persistence of excitation.

Definition 3: Consider a nonlinear system (1) with a Koop-
man linear embedding (3). We say l trajectories of length-L
from (1), col(ui

d, y
i
d) ∈ B1|L, i = 1, . . . , l with l ≥ mL + nz

are persistently exciting of order L, if the following matrix

HK :=

[
u1

d u2
d . . . ul

d
Φ(x1

0) Φ(x2
0) . . . Φ(xl

0)

]
∈ R(mL+nz)×l (8)

has full row rank, where xi
0 ∈ Rn is the initial state for each

trajectory col(ui
d, y

i
d), i = 1, . . . , l.

This notion of persistent excitation generalizes [21, Def. 1],
that focuses only on affine systems. Our notion is suitable for
any nonlinear system with a Koopman linear embedding. If
the Koopman linear embedding (3) is controllable, then the
persistent excitation of order L+nz for the input sequence is
sufficient to guarantee that (8) has full row rank. If we collect
multiple trajectories (see [23]), we require the multiple input
sequences u1

m, . . . , u
q
m to be collectively persistently exciting

of order L+ nz, that is,
rank

( [
HL+nz

(u1
m), . . . ,HL+nz

(uq
m)
] )

= m(L+ nz).

Theorem 2: Consider a nonlinear system (1) with a Koop-
man linear embedding (3). Suppose that l trajectories of
length-L from (1), col(ui

d, y
i
d) ∈ B1|L, i = 1, . . . , l, are persis-

tently exciting of order L. Then, a length-L sequence col(u, y)
is a valid trajectory of the Koopman linear embedding (3) if
and only if there exists g ∈ Rl such that

Hdg = col(u, y)
where

Hd :=

[
u1

d u2
d . . . ul

d
y1d y2d . . . yld

]
∈ R(m+p)L×l. (9)

Due to page limit, we put the proof to our report [24].
Theorem 2 allows us to use the trajectories from the nonlinear
system (1) that are persistently exciting of order L to represent
any length-L trajectory of the Koopman linear embedding (3).

Combining Theorems 1 and 2 leads to a direct data-driven
representation for a nonlinear system (1) that admits a Koop-
man linear embedding (3), as we describe in our next result.
Given a trajectory library Hd = col(Ud, Yd) in (9), where
each column is a trajectory of length L = Tini + N from
the nonlinear system (1), we partition matrices Ud and Yd as[

UP
UF

]
:= Ud,

[
YP
YF

]
:= Yd, (10)

where UP and UF consist of the first Tini rows and the last N
rows of Ud, respectively (similarly for YP and YF).

Theorem 3: Consider a nonlinear system (1) with a Koop-
man linear embedding (3). We collect a data library Hd in (9)
with l ≥ mL+nz trajectories, whose length L is Tini +N and
Tini ≥ nz. Suppose these l trajectories are persistently exciting
of order L. At time k, denote the most recent input-output
sequence col(uini, yini) with length-Tini from (1) as
uini = col(uk−Tini , . . . , uk−1), yini = col(yk−Tini , . . . , yk−1).

For any future input uF = col(uk, . . . , uk+N−1), the sequence

col(uini, yini, uF, yF) is a valid length-L trajectory of (1) if and
only if there exists g ∈ Rl such that

col(UP, YP, UF, YF)g = col(uini, yini, uF, yF). (11)
Proof: This result is a combination of Theorems 1 and 2.

Since the pre-collected data is persistently exciting of order
L, Theorem 2 confirms that col(uini, yini, uF, yF) is a valid
trajectory with length L = Tini + N of the Koopman linear
embedding (3) if and only if there exists a vector g ∈ Rl

such that (11) holds. In addition, Theorem 1 guarantees that
the length-L trajectory col(uini, yini, uF, yF) of the Koopman
linear embedding (3) is a valid trajectory of the nonlinear
system (1) if and only if col(uini, yini) is a trajectory of the
nonlinear system (1), which readily holds.

Theorem 3 gives a direct data-driven representation of non-
linear systems with a Koopman linear embedding from its in-
put and output data. This data-driven representation requires
no knowledge of the lifting functions (2) as long as they exist.
Also, we do not require the Koopman linear embedding (3) to
be controllable or observable. Two key enablers for Theorem 3
are 1) our notion of persistent excitation for nonlinear systems
in Definition 3 that enables Theorem 2, and 2) a sufficiently
long initial trajectory col(uini, yini) from the nonlinear system
that ensures Theorem 1.

We here remark that Theorem 3 illustrates the importance
of increasing the width and depth of the trajectory library (9)
and (10). While the benefits of increasing width are well-
recognized in the literature, the importance of enlarging the
depth has been overlooked. Collecting more trajectories to
increase the width of (9) contributes to the persistent excitation
condition (see Theorem 2). On the other hand, fixing the
prediction horizon N , a sufficient depth ensures the initial
trajectory is long enough in (10), which guarantees that the tra-
jectory in the space of the Koopman linear embedding is also
a valid trajectory for the nonlinear system (see Theorem 1).
Furthermore, Theorem 3 shows the required width and depth
of the trajectory library depend on the “hidden” dimension of
the Koopman linear embedding of the nonlinear system.

According to Theorem 3, the data-driven representation (11)
is equivalent to the Koopman linear embedding. This can be
directly integrated with predictive control at each time k as

min
uF∈U,yF

∥uF∥2R + ∥yF − yr∥2Q

subject to (11)
(12)

where R ≻ 0, Q ⪰ 0, yr denotes the reference output trajec-
tory, and uF ∈ U is the input constraint. For nonlinear systems
with Koopman linear embedding, there is no need to use any
lifting functions, which are instead required by most existing
Koopman-based model predictive control approaches [7], [10].

Remark 1: The literature on extending Willems’ fundamen-
tal lemma to nonlinear systems [12]–[14] requires some prior
knowledge of the system dynamics, with additional constraints
to account for the system’s nonlinear structure. When the
nonlinearities exist in the input or output (e.g., Hamerstrin
systems, Wiener systems), a change of variables is needed
in [12]. Our data-driven representation (11) has no additional
constraints and requires no knowledge of lifting functions.
One only needs a new persistent excitation condition and a
sufficiently long initial trajectory. The work [25] integrates



Willems’ fundamental lemma with the learning of lifting func-
tions and [26] forms the trajectory library with the lifted states,
which also requires the learning of lifting functions. In con-
trast, we show that learning these lifting functions is redundant
for nonlinear systems with Koopman linear embedding.

C. A special case: Affine systems

We here demonstrate that affine systems are a special case
in our framework and compare our result with [21]. Consider
an affine system of the form

xk+1 = Axk +Buk + e, yk = Cxk +Duk + r, (13)
where xk ∈ Rn̄, uk ∈ Rm̄, yk ∈ Rp̄ are the state, input and
output at time k, respectively and e ∈ Rn̄, r ∈ Rp̄ are two
constant vectors. The result in [21, Theorem 1] presents a
data representation for (13), which we reproduce below.

Theorem 4 ( [21, Theorem 1]): Given the pre-collected tra-
jectories ud, xd, yd of (13), suppose

HA :=col(HL(ud),H1(xd,0:nd−L),1) (14)
has full row rank. The length-L input-output data sequence
col(uini, yini, uF, yF) ∈ R(m̄+p̄)L is a valid trajectory of (13) if
and only if there exists g ∈ Rnd−L+1 such that

col(UP, YP, UF, YF)g = col(uini, yini, uF, yF),
∑

g = 1. (15)

A unique feature in Theorem 4 is that the coefficient g
should have an affine constraint, since (13) is affine. Also the
condition of persistent excitation in Theorem 4 is stronger than
the requirement in the standard Willems’ fundamental lemma;
see [21, Section II] for details.

Here, we show that any affine system (13) has an exact
Koopman linear embedding, and thus our main Theorem 3
naturally applies. Choose a vector of lifting functions z(x) =
[ϕ1(x), . . . , ϕn(x), 1]

T where ϕi(x) : Rn̄ → R is the i-th
element of the state, i.e., ϕi(x) = xi. Then, we have a
Koopman linear embedding for the affine system (13) as

zk+1 =

[
A e
0 1

]
zk +

[
B
0

]
uk,

yk =
[
C r

]
zk +Duk.

(16)

Consequently, with the persistent excitation and an initial
trajectory of length n̄+1 in Theorem 3, the data-representation
(11) is necessary and sufficient for the behavior of (13). In this
case, we need a slightly longer initial trajectory, but no affine
constraint on g is needed. We note that the data matrices HA

in (14) and HK in (8) become the same, thus the persistent
excitation conditions in Theorems 3 and 4 are identical. We
finally remark that our data-representation in Theorem 3 works
for any nonlinear systems with Koopman linear embedding. It
is unclear how to design constraints on g to extend Theorem 4.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments on a
nonlinear system that admits a Koopman linear embedding.
We compare the prediction and control performance of three
linear representations: 1) our proposed Data-Driven Koopman
representation (DD-K) (11), 2) the approximated Data-Driven
Affine representation (DD-A) (15) and 3) the standard Koop-
man linear approximation (3) from EDMD (4) (EDMD-K).

(a) Comparison of linear models (b) Comparison of different Tini

Fig. 1. Prediction of x2 with a given input uF. In (a) and (b), the black
dashed curve and the red curve are the true trajectory of x2 and the
predicted trajectory of DD-K with Tini = 4, resp. The orange and blue
curves in (a) are DD-A and EDMD-K, and the brown and purple curves
in (b) are DD-K with initial trajectory of lengths 2 and 3, resp.

A. Experiment Setup
We consider the following nonlinear system[

x1,k+1

x2,k+1

]
=

[
0.99x1,k

0.9x2,k + x2
1,k + x3

1,k + x4
1,k + uk

]
,

with output yk = xk, and state x = col(x1, x2) ∈ R2 and
input u ∈ U :=

[
−5, 5

]
. We choose the lifted state as z :=

col(x1, x2, x
2
1, x

3
1, x

4
1), and its Koopman linear embedding is

zk+1 =


0.99 0 0 0 0
0 0.9 1 1 1
0 0 0.992 0 0
0 0 0 0.993 0
0 0 0 0 0.994

 zk +


0
1
0
0
0

uk,

yk =

[
1 0 0 0 0
0 1 0 0 0

]
zk.

This linear embedding is not controllable but has an observ-
ability index 4. In our experiments, the predication horizon is
N = 20, and the lengths of the initial trajectory col(uini, yini)
are 4 and 2 for DD-K and DD-A, respectively. Then, we
collect a single trajectory of length 52, which is the minimum
necessary data length to make HK in (8) a square matrix. For
the EDMD method, we simulate 200 trajectories with 200 time
steps. The lifting functions are chosen to be the state of (1) and
300 thin plate spline radial basis functions whose center x0 is
randomly selected with uniform distribution from

[
−1, 1

]2
and

has the form ϕ(x) = ∥x−x0∥22log(∥x−x0∥2). The parameters
in (12) are set as R = IN and Q = IN ⊗ diag(0, 100),
and the prediction model is replaced by (3) and (15) for
EDMD-K and DD-A, respectively. A regularization term reg =
λg∥g∥2 + λy∥σy∥2 is added to the objective function for the
DD-A with variables g, σy and λg = 400, λy = 2 × 105 to
ensure feasibility and numerical stability.

B. Prediction and Control Performance
We first compare the prediction performance for the three

methods, and we also illustrate our DD-K with different
initial trajectory lengths. Given the future input uF(k) =
5 sin(πk/4), Figure 1(a) displays results for the three methods.
The predicted output trajectories of DD-K with different initial
trajectory lengths are shown in Figure 1(b). As expected from
Theorem 3, the predicted trajectory from DD-K with Tini = 4
is the same as the true trajectory (see red and black dashed
curves in Figure 1). However, trajectories from DD-A and
EDMD-K (see orange and blue curves in Figure 1(a)) and the



(a) Tracking performance (b) Realized control cost

Fig. 2. Control performance of using different linear representations. (a)
Control performance for tracking the Sinusoidal wave. The black dashed
curve denotes the reference trajectory of x2. The red, orange and
blue curves denote DD-K, DD-A and EDMD-K, respectively. (b) Realized
control cost for tracking sinusoidal wave and step signal.

DD-K with initial trajectory length 2 and 3 (see purple and
brown curves in Figure 1(b)) deviate from the true trajectory.
For DD-A, the affine constraint is inaccurate for this non-affine
system. For the EDMD-K, the selected lifting functions are not
guaranteed to form an invariant space under the dynamics of
the nonlinear system (i.e., the element of Φ(f(x, u)) is not
in the span(ϕ1(x), . . . , ϕn(x), u), cf. [11]). Thus, the model
obtained from EDMD has approximation errors.

We next compare control performance of predictive con-
trollers utilizing different linear representations. Our goal is
to make x2 track two types of reference trajectories: 1)
Sinusoidal wave yr,k = col(0, 5 sin(πk/30)) and 2) Step signal
yr = col(0, 5). We consider the realized control cost that is
computed as ∥u∗∥2R+∥y∗∥2Q where u∗ is the computed control
input and y∗ is the actual trajectory after applying u∗. The
results are shown in Figure 2, and the realized control cost
is averaged over 100 data sets since the performance of these
models is related to the pre-collected data. From Figure 2(a),
we can observe the controller with DD-K can track the ref-
erence trajectory perfectly (see red and black dashed curves).
EDMD-K can also track the reference trajectory closely (see
blue curve) after serval periods while applying DD-A has a
longer transition phase with a large offset. The realized control
cost in Figure 2(b) further demonstrates DD-A > EDMD-K >
DD-K for both sinusoidal wave and step signal. Although the
control input is recomputed at each time step, the inaccurate
prediction of EDMD-K and DD-A (see Figure 1(a)) leads to
the tracking error. We finally note that EDMD-K requires an
order of magnitude more data while failing to achieve the same
performance with our method DD-K.

V. CONCLUSIONS

We have developed an extended Willems’ fundamental
lemma for nonlinear systems that admit a Koopman linear
embedding. The simple-to-build data-driven model can replace
the Koopman linear embedding, eliminating the non-trivial
process of selecting lifting functions. Our results further
illustrate that the required size of the trajectory library is
related to the dimension of the Koopman linear embedding
and demonstrate the importance of having sufficiently long
trajectories. Future directions include developing data-driven
models for nonlinear systems with approximated Koopman lin-
ear embeddings and analyzing the effect of adaptively updating
the trajectory library with the most recent data sequence.
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