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Abstract: This paper presents a general method to construct Poisson integrators, i.e.,
integrators that preserve the underlying Poisson geometry. We assume the Poisson manifold is
integrable, meaning there is a known local symplectic groupoid for which the Poisson manifold
serves as the set of units. Our constructions build upon the correspondence between Poisson
diffeomorphisms and Lagrangian bisections, which allows us to reformulate the design of Poisson
integrators as solutions to a certain PDE (Hamilton-Jacobi). The main novelty of this work is
to understand the Hamilton-Jacobi PDE as an optimization problem, whose solution can be
easily approximated using machine learning related techniques. This research direction aligns
with the current trend in the PDE and machine learning communities, as initiated by Physics-
Informed Neural Networks, advocating for designs that combine both physical modeling (the
Hamilton-Jacobi PDE) and data.
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1. INTRODUCTION

Due to their persistent presence in science and engineer-
ing, Hamiltonian systems have been intensively studied
for centuries. Special attention has been given to all the
structures able to describe Hamiltonian systems, namely
symplectic and Poisson geometry. It is broadly recognized
that geometry plays a pivotal role in the dynamical be-
havior of the aforementioned systems. Nonetheless, since
Hamiltonian systems can describe a wide array of systems
in nature, they usually show a high level of complexity that
hinders their complete understanding. This fact has led
several communities to the design of algorithms that seek
to produce accurate simulations of Hamiltonian systems
as an enabling tool for the analysis of their dynamical
behavior and properties.

To tackle this challenge, we follow here the geometric
approach. The main observation is that numerical schemes
sharing the same geometric properties as the original
system usually enjoy better accuracy and more faithful
qualitative description of the system compared to non-
geometric algorithms. This philosophy has been broadly
exploited when the underlying geometry is symplectic, see
for instance Sanz-Serna and Calvo (1994); Hairer et al.
(2010).
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Nonetheless, when the Hamiltonian system is described us-
ing the more general Poisson setting, the situation is more
subtle. See Cosserat (2023) and the references therein. This
is mainly due to the fact that Poisson geometry is, in a
way, singular and irregular when compared to symplectic
geometry. Moreover, to the best of the authors’ knowl-
edge, there are no general methods for obtaining Poisson
integrators 1 , although some recent attempts include those
in Cosserat (2023). In cases where the Poisson structure
is linear and integrable, the references Ge (1991); Zhong
and Marsden (1988); McLachlan et al. (2014); Ferraro
et al. (2017) provide methods to generate them. These
methods rely on the exploitation of the properties of the
symplectic groupoid that integrates the Poisson manifold,
or other symplectic realizations. Additionally, the same
geometric structure was recently used to develop learning
methods that conserve the underlying Poisson structure,
as shown in Vaquero et al. (2023). Also in Jin et al.
(2023) the authors design Poisson neural networks to learn
constant rank Poisson Hamiltonian systems based on the
Darboux-Lie theorem, finding first a coordinate change of
coordinates that locally transforms the Poisson manifold
as the product of a symplectic manifold (with the canonical
symplectic structure) and a manifold with the null Poisson
bracket (see Weinstein (1983) for a more general result).

In this paper, following the research direction initiated
in Vaquero et al. (2023), we propose a step further in
the construction of Poisson integrators, combining differ-

1 By integrator we mean a numerical scheme designed to approxi-
mate the dynamics of a system. In this case, of a Hamiltonian vector
field on a Poisson manifold.



ential geometry with machine learning techniques. More
precisely, we present the following contributions. (1) We
introduce a general geometric setting for describing Pois-
son geometric integrators when the problem evolves on an
integrable Poisson manifold. (2) We provide a method for
approximating the Hamilton-Jacobi equation using ma-
chine learning-inspired techniques. (3) We illustrate our
findings using the rigid body as an example.

2. A QUICK REVIEW OF GEOMETRY

2.1 Basic Notions on Symplectic and Poisson Geometry

In this section we introduce the main geometric structures
used along the paper. We refer the reader to Crainic et al.
(2021) for additional details.

Definition 1. (Symplectic Manifold). A symplectic mani-
fold is a pair (M,Ω), where M is a manifold and Ω a
non-degenerate closed two-form.

Example 1. The cotangent bundle of a manifold, say T ∗Q,
is endowed with the canonical symplectic form ωQ =
−dθQ, where θQ is the Liouville one form Abraham and
Marsden (1987). In local coordinates (xi, pi), ωQ = dxi ∧
dpi.

Darboux’s Theorem guarantees that given a symplectic
manifold (M,Ω) there are local coordinates (xi, yi) in
which the coordinate representation of Ω is Ω = dxi ∧ dyi.

Definition 2. (Lagrangian Submanifold). A Lagrangian sub-
manifold L of a symplectic manifold (M,Ω) is a subman-
ifold of dimension half the dimension of M and such that
the restriction of Ω to L is zero.

Example 2. Given a manifold Q, dimQ = n, and its
cotangent bundle T ∗Q, any differentiable function S :
Q → R produces a Lagrangian submanifold in T ∗Q by
just taking graph(dS) ⊂ T ∗Q, this is called a horizontal
Lagrangian submanifold. In canonical coordinates, (xi, pi),

this submanifold is just given by (xi, pi =
∂S

∂xi
(x)), where

x ∈ Q. The main difficulty is to describe Lagrangian
submanifolds which are not horizontal (i.e. the image of dS
). It means that one can allow S to be dependent not only
on the variables (xi), but on mixed set of n-coordinates
like (xa, pn−a), 1 ≤ a ≤ m < n. Of course, this statement
holds only locally (see Arnold (1966)).

Definition 3. (Poisson Manifold). A Poisson manifold is a
manifold P endowed with a bi-vector Π satisfying [Π,Π] =
0, where [·, ·] is the Schouten bracket, see (Crainic et al.,
2021, Definition 2.3).

Definition 4. (Casimir function). A function C : P → R
is called a Casimir function of a Poisson manifold (P,Π)
if it verifies that Π(dC, dg) = 0 for all function g : P → R.

Once we have set the basic objects of our constructions,
we introduce the mappings conserving these geometric
structures.

Definition 5. (Poisson Mappings). Let (P1,Π1) and (P2,Π2)
be two Poisson manifolds. Then, a mapping f : P1 → P2

is Poisson (resp. anti-Poisson) if f∗Π1 = Π2 (resp. f∗Π1 =
−Π2). See (Crainic et al., 2021, Definition 2.13) for the
definition of the pushforward f∗(·).

One of the main uses of Poisson manifolds is the descrip-
tion of Hamiltonian vector fields.

Definition 6. (Hamiltonian Vector Field). Given a Pois-
son manifold (P,Π) and a function (Hamiltonian)H : P →
R, we define the associated Hamiltonian vector field, XH ,
as the unique vector field satisfying XH(g) = Π(dH, dg)
for all functions g : P → R, see Crainic et al. (2021).

The flow of the Hamiltonian vector field XH is denoted by
φH
t . A basic result in Poisson geometry states that φH

t is
a Poisson diffeomorphism for all fixed t.

2.2 Poisson manifolds, Symplectic Realizations, and
Symplectic Groupoids

Poisson manifolds are singular and difficult to deal with. A
common approach in mathematics for analyzing complex
structures is to seek “desingularizations”. In other words,
we aim to obtain a “nicer” geometric structure (symplectic
in our case) on a manifold, endowed with a projection
over the Poisson manifold under a Poisson mapping. This
structure is called a symplectic realization, see (Crainic
et al., 2021, Ch. 6). The main advantage of this approach is
that it allows us to use the better understood and manage-
able techniques from symplectic geometry. Among them,
Lagrangian submanifolds and their generating functions
play an instrumental role here.

The motivation for introducing symplectic groupoids is
twofold: (1) The study of symplectic realizations natu-
rally leads to symplectic groupoids, as described in Coste
et al. (1987); Crainic et al. (2021). Symplectic groupoids
constitute symplectic realizations when the set of units
is a Poisson manifold. Moreover, the structural mappings
sou and tar (described below) become Poisson and anti-
Poisson mappings. Remarkably, sou and tar exhibit a dual
pair structure, as detailed in (Crainic et al., 2021, Ch
14) and (Coste et al., 1987, Section III). (2) Lagrangian
submanifolds in symplectic groupoids induce Poisson dif-
feomorphisms in the set of units (see Theorem 9 below).

Definition 7. (Groupoid). A groupoid (G) consists of the
following components:

(1) Two Sets:
• A set of objects (or units), denoted (G0).
• A set of arrows (or morphisms), denoted (G1).

(2) Source and Target Maps:
• A source map sou : G1 → G0 assigning to each
arrow an object called its source.

• A target map tar : G1 → G0 assigning to each
arrow an object called its target.

(3) Composition Law: A partially defined composition
(or multiplication) operation m : G1 ×G0

G1 → G1,
where G1 ×G0

G1 is the set of all pairs of arrows
(g, h) such that the target of h is the source of g
(i.e., tar(h) = sou(g)). The result of the composition
m(g, h) is an arrow from the source of h to the target
of g.

(4) Associativity: The composition of arrows is associa-
tive where defined. That is, for any three arrows f, g, h
in G1, if f · (g · h) and (f · g) · h are defined, then
f · (g · h) = (f · g) · h.

(5) Identity Elements: For each object x in G0, there
exists an identity arrow ex in G1 such that sou(ex) =
x, tar(ex) = x, and for any arrow g with sou(g) = x
or tar(g) = x, the compositions ex · g and g · ex are
defined and equal to g.



(6) Inverses: For each arrow g in G1, there exists an
inverse arrow g−1 in G1 such that sou(g−1) = tar(g),
tar(g−1) = sou(g), and the compositions g · g−1 and
g−1 · g are defined and equal to the identity arrows of
tar(g) and sou(g), respectively.

Definition 8. (Symplectic Groupoid). A symplectic grou-
poid is a groupoid G equipped with a symplectic structure
(a non-degenerate, closed 2-form) on its space of arrows
G1, such that the graph of the multiplication map m :
G1×G0G1 → G1 is a Lagrangian submanifold of G1×G1×
G1 (here G1 denotes G1 with minus the given symplectic
structure).

When there is no room for confusion, we identify the set of
arrows G1 and the groupoid itself, G. Although there are
known geometric obstructions to obtaining global symplec-
tic groupoids whose set of units is a given Poisson mani-
fold, it is possible to obtain a local symplectic groupoid, as
discussed in Cabrera (2022). We would like to emphasize
that local existence is sufficient for our constructions, as
they are inherently local in nature.

Example 3. Let h a Lie algebra with Lie bracket [ , ] andH
a Lie group integrating it. Consider the Poisson manifold
(G0 = h∗,ΠLP ) where ΠLP is the induced Lie-Poisson
structure.

ΠLP (dg1, dg2)(µ) = −µ([dg1(µ), dg2(µ)])

where g1, g2 : h∗ → R and µ ∈ h∗. In this particular case,
we can take G1 as T ∗H where the source and target maps
are given by

sou : T ∗H −→ h∗

(µh) 7−→ sou(µh) = JL(µh),

tar : T ∗H −→ h∗

(µh) 7−→ tau(µh) = JR(µh).

(1)

where

⟨JL(µh), ξ⟩ = ⟨µh, TeRh(ξ)⟩ , ⟨JR(µh), ξ⟩ = ⟨µh, TeLh(ξ)⟩
for all ξ ∈ h. Here, Rh and Lh denote the right and left
translations on the Lie group H, repectively. See more
details and examples in Marle (2005); Ferraro et al. (2017).

3. LAGRANGIAN BISECTIONS AND POISSON
DIFFEOMORPHISMS: THE HAMILTON-JACOBI

EQUATION

Let (P ≡ G0,Π) be a given Poisson manifold and assume
there exists a symplectic groupoid, G, having G0 as its
set of units. This assumption is always valid locally, so
there is no loss of generality. Let H : G0 → R be a
Hamiltonian. Our goal is to design methods to accurately
approximate φH

t . Towards this end, the stepping stone of
our constructions is the following observation.

Key Observation: Poisson diffeomorphisms
in G0, like φH

t , can be described through
Lagrangian submanifolds in the symplectic
groupoid G.

In this context, the next result is at the core of our
construction of Poisson integrators.

Theorem 9. (Coste et al. (1987)). Let G be a symplectic
groupoid. Let L be a Lagrangian submanifold of G such
that sou|L : L → G0 is a (local) diffeomorphism (a
Lagrangian bisection). Then

(1) tar|L : L → G0 is a (local) diffeomorphism as well.

(2) The mapping L̂ = sou ◦ tar−1
|L : G0 → G0 is a (local)

Poisson diffeomorphism.

Motivated by this result, a natural question is how to
characterize and find the Lagrangian submanifold L, in-
ducing the transformation φH

t . The answer leads directly
to a geometric version of the Hamilton-Jacobi equation, as
discussed in Ferraro et al. (2017). Due to space constraints,
we provide here only a local description of the Hamilton-
Jacobi equation. Consider a symplectic groupoid (G,Ω)
with Darboux coordinates, (xi, pi) such that Ω reads as
dxi ∧ dpi. We examine the extended space R2 × G with
coordinates (t, pt, x

i, pi), where we think of pt as the dual
variable to t. In this context, we consider the 2-form with
local expression dt ∧ dpt + dxi ∧ dpi, which turns R2 × G
into a symplectic manifold. Below, we define a generalized
solution of the Hamilton-Jacobi equation.

Definition 10. A Lagrangian submanifold L in R2 × G is
a generalized solution to the Hamilton-Jacobi equation if

(pt +H ◦ sou)|L = constant.(Gen. HJ)

When a generating function, say S is used to describe the
Lagrangian submanifold L, then equation (Gen. HJ) takes
the usual PDE form. For simplicity in this paper, we only
consider the case where the generating function depends
on (t, pi). This approach is applicable to the Lie-Poisson
case treated below. Then, the Hamilton-Jacobi equation
reads as follows

∂S

∂t
(t, pi) +H(sou(

∂S

∂p
(t, pi), pi)) = constant.(2)

Proposition 11. (Ferraro et al. (2017)). The Lagrangian sub-
manifold satisfying the Hamilton-Jacobi equation induces
the Hamiltonian flow, φH

t , up to an initial condition. That
is, we can recover φH

t ◦ f where f is a Poisson diffeo-
morphism. If S(0, pi) induces the identity on P , then we
recover exactly φH

t .

3.1 Approximating the Hamilton-Jacobi Equation

Since obtaining an analytical solution to the Hamilton-
Jacobi equation is challenging, approximation methods
must be considered. A classical approach involves obtain-
ing a Taylor expansion of the generation function S in the
t-variable and deriving a recurrence relationship that en-
ables the determination of a solution to a desired arbitrary
high order (see Ferraro et al. (2017)). The main contri-
bution of this paper is to present an alternative strategy
based on recent developments and tools in machine learn-
ing, which involves viewing the PDE as an optimization
problem. To do this, we consider a neural network with
weights W parametrizing candidate functions, S(t, pi;W ).
Then, we select a set of points {(pi)j}1≤j≤N , where the
Hamilton-Jacobi equation is evaluated. These points can
be obtained using different means: for instance, through
uniform sampling in the region where we aim to build
the approximation to the Hamilton-Jacobi equation. Then,
we enforce the Hamilton-Jacobi equation at the points
(p)1≤j≤N through the minimization of the mean-square
error loss (or any other loss function), and consider the
problem:

min
W

1

N

∑
j

(
∂S

∂t
(t, (pi)j ;W ) +H(sou(

∂S

∂p
(t, (pi)j ;W ), (pi)j))

)2

.(3)



This problem penalizes scenarios where the Hamilton-
Jacobi equation is not satisfied. To approximately solve
it, we can use the recent advancements in machine learn-
ing, including backpropagation to compute gradients and
efficient optimization algorithms such as SGD, Nesterov,
ADAM and others. See Goodfellow et al. (2016) for a
detailed description of these topics.

4. NUMERICAL SIMULATIONS

In this section, we illustrate our findings by applying the
described methodology to the rigid body, a benchmark
system of Poisson dynamics. We consider the usual Lie-
Poisson structure on so∗(3), as discussed in Marsden and
Ratiu (1994), along with the Hamiltonian

H =
1

2

(
x2

1.5
+

y2

2
+

z2

2.5

)
.

It can be shown that T ∗SO(3) is a symplectic groupoid
having so∗(3) as its set of units, and therefore constitutes
a symplectic realization (see Ferraro et al. (2017)). We uni-
formly sampled 80, 000 points around (0, 0, 0), each coor-
dinate varying between −3 and 3 and used ADAM (10, 000
iterations with a learning rate of 10−4) to approximately
solve (3). We employed a feed-forward neural network of
four layers with 500−250−250−250 neurons and activation
function tanh, using Pytorch for Python. We used uniform
Xavier initialization for the weights. Two different initial
conditions were chosen to showcase the outcomes when
the obtained integrators are used, as seen in Fig. 1. The
qualitative behaviour of the simulated trajectories is very
similar to that of the original system. In both cases, we
observe a nice conservation of the Hamiltonian throughout
the simulated trajectories, even for very long simulations.
As expected, the Casimir is conserved in both cases up to
round-off error. The evolution of the Hamiltonian, Casimir
and the difference from the original dynamics for a long
trajectory (10, 000 iterations with stepsize 0.1) is illus-
trated in Figure 2.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we delved into the geometric setting pre-
sented previously in Vaquero et al. (2023). The frame-
work introduced possesses several properties that make it
compelling for the design of Poisson integrators: it fully
respects the underlying Poisson geometry and it is highly
flexible, making it amenable to various modifications and
improvements. Here, we describe a couple of research di-
rections that we plan to pursue.

General Poisson Structures: When the symplectic groupoid
is not readily available, several means can be used to
approximate it. Two main constructions (Cabrera, 2022)
have been proposed to produce local symplectic groupoids
that can integrate (locally) any Poisson manifold. An
ongoing research direction aims to exploit these construc-
tions to extend the presented framework to any Poisson
manifold.

Combination with Data: In some situations, trajectories
of the system are available. These trajectories might have
been obtained through other (geometric or non-geometric)
integrators or might correspond to actual measurements.

Fig. 1. Comparison of the simulated dynamics (blue) and
the real trajectory (red) when the initial condition
are the points (1, 1, 2) (top plot) and (3, 2, 0) (bottom
plot).

In these cases, we envision a blended approach that com-
bines both the data and the Hamilton-Jacobi equation.
In this fashion, we follow the spirit of PINNS as described
by Raissi et al. (2019), designing integrators though finding
the Lagrangian submanifold that minimizes an objective
function of the type loss = lossHJ + lossdata. In this ob-
jective function lossHJ ensures that the Hamilton-Jacobi
equations is satisfied to a certain degree, following the
same pattern as in (3). The term lossdata would make the
Lagrangian submanifold L induce a Poisson transforma-
tion that matches the given data.
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des symplectiques. In Publications du Département de
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