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Abstract

Establishing stability certificates for closed-loop systems under reinforcement
learning (RL) policies is essential to move beyond empirical performance and
offer guarantees of system behavior. Classical Lyapunov methods require a strict
stepwise decrease in the Lyapunov function, but such certificates are difficult to
construct for learned policies. The RL value function is a natural candidate, but
how to adapt it for this purpose is not well understood. To gain intuition, we first
study the linear quadratic regulator (LQR) problem and make two key observations.
First, a Lyapunov function can be obtained from the value function of an LQR
policy by augmenting it with a residual term related to the system dynamics and
stage cost. Second, the classical Lyapunov decrease requirement can be relaxed
to a generalized Lyapunov condition requiring only decrease on average over
multiple time steps. Using this intuition, we consider the nonlinear setting and
formulate an approach to learn generalized Lyapunov functions by augmenting
RL value functions with neural network residual terms. Our approach successfully
certifies the stability of RL policies trained on Gymnasium and DeepMind Control
benchmarks. We also extend our method to jointly train neural controllers and
stability certificates using a multi-step Lyapunov loss, resulting in larger certified
inner approximations of the region of attraction compared to the classical Lyapunov
approach. Overall, our formulation enables stability certification for a broad class
of systems with learned policies by making certificates easier to construct, thereby
bridging classical control theory and modern learning-based methods.

1 Introduction

Designing and certifying stable control policies is a core challenge in both control theory and
reinforcement learning (RL). Although RL methods are capable of learning policies that optimize
long-term performance, their stability guarantees are often lacking. The classical Lyapunov theory
[Lyapunov, 1992] offers a principled framework for certifying stability but constructing a function
that satisfies the required stepwise decrease condition is often challenging in practice. While value
functions from optimal control or RL encode long-term cumulative cost, they do not naturally satisfy
the Lyapunov stability conditions.

We propose certifying stability using a generalized notion of Lyapunov function [Fürnsinn et al., 2023,
2025] that replaces the stepwise decrease condition with a multi-step, weighted decrease criterion,
allowing temporary increases over a finite horizon. As a result, constructing a generalized Lyapunov
stability certificate is easier, enabling stability verification for a broader class of policies and systems.

For linear systems with quadratic cost under discounted optimal control, the value function typically
fails to satisfy classical Lyapunov conditions due to the influence of the discount factor. Postoyan
et al. [2017] show that augmenting the value function with a quadratic residual term allows certifying
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stability via a linear matrix inequality (LMI), although the guarantees are conservative with respect
to the discount factor. Leveraging this insight, we show that augmenting the value function with
a quadratic residual leads to a valid generalized Lyapunov function, which certifies stability for a
boarder range of discount factors.

Building on the success of our approach in the linear setting, we extend it to nonlinear systems, where
classical Lyapunov analysis is substantially more difficult. We augment value functions learned by
RL algorithms (e.g., PPO [Schulman et al., 2017], SAC [Haarnoja et al., 2018]) with a neural residual
term to form generalized Lyapunov functions, and jointly learn state-dependent multi-step weights
to satisfy the generalized decrease condition. This joint learning scheme enables certification of
nonlinear RL policies in settings where classical Lyapunov functions are challenging to construct by
learning generalized certificates that tolerate non-monotonic behavior along trajectories.

In addition to showing stability of fixed policies, we extend our approach to support the joint synthesis
of stable neural controllers and generalized Lyapunov certificates. Prior works [Chang et al., 2019,
Wu et al., 2023, Yang et al., 2024] frame this problem as learning a controller–certificate pair that
maximizes the volume of a certifiable region, while iteratively training on counter-examples where
Lyapunov conditions fail. We incorporate our generalized multi-step condition into this formulation
and show that it enables larger formally verifiable inner approximations of the region of attraction
compared to standard one-step Lyapunov training.

Contributions. In summary, we make the following contributions:

• We introduce a framework for certifying reinforcement learning policies by constructing
a generalized Lyapunov function, composed of the policy’s value function and a learned
neural residual. Empirically, our formulation certifies policies on Gymnasium [Towers
et al., 2024] and DeepMind Control Suite [Tassa et al., 2018] benchmarks where classical
single-step Lyapunov methods fail.

• We show analytically that for the linear quadratic regulator (LQR) problem, the validity of
the proposed generalized Lyapunov function can be certified by a set of LMIs.

• We extend the formulation to jointly learn the control policy and stability certificate using
a generalized multi-step Lyapunov loss, resulting in larger certified regions of attraction
compared to classical Lyapunov approaches.

Related Work. Optimal control [Bertsekas, 2012] and reinforcement learning (RL) [Sutton et al.,
1998] offer a variety of principled techniques for designing control policies to optimize the per-
formance of intelligent agents and dynamical systems. In the special case of linear systems with
quadratic rewards, the optimality and stability of LQR policies [Anderson and Moore, 2007] are
well understood. However, despite a variety of methods for synthesizing policies (e.g., PPO [Schul-
man et al., 2017], SAC [Haarnoja et al., 2018], and DDPG [Lillicrap et al., 2015] are among the
most widely used) for nonlinear systems with nonlinear costs, very few techniques are available for
certifying the stability of the resulting closed-loop system.

Several works have explored connections between Lyapunov stability [Lyapunov, 1992] and RL,
mainly in the context of safe RL. Perkins and Barto [2002] proposed a safe RL formulation by learning
to switch among hand-designed Lyapunov-stable controllers. Berkenkamp et al. [2017] developed a
model-based RL algorithm that uses Gaussian process dynamics and Lyapunov verification to safely
improve policies while guaranteeing stability with high probability. Chow et al. [2018] formulate
a Lyapunov-based method for safe RL in constrained Markov decision processes, using linear
constraints to ensure safety during training. Hejase and Ozguner [2023] regularized policy training by
penalizing violations of a learned Lyapunov condition to encourage stability in autonomous driving.
Mittal et al. [2020] learn a Lyapunov function from suboptimal demonstrations and incorporate it as
a terminal cost in a one-step model predictive control formulation to improve stability.

In parallel, there has been growing interest in jointly learning policies and Lyapunov functions from
data to obtain stability guarantees for nonlinear systems. Chang et al. [2019] trained Lyapunov
certificates with formal verification via satisfiability modulo theories. Other works constrain neural
architectures to satisfy Lyapunov conditions structurally [Gaby et al., 2022, Boffi et al., 2021], or apply
mixed-integer programming [Dai et al., 2021]. Long et al. [2023] studied neural distributionally robust
Lyapunov functions under additive uncertainty. Wu et al. [2023] learn provably stable controllers
for discrete-time nonlinear systems by jointly training a policy and Lyapunov function, with formal
verification via mixed-integer linear programs. Yang et al. [2024] use gradient-guided falsification
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for training a controller-certificate pair, and apply formal verification via ω,ε-CROWN [Wang et al.,
2021] to certify stability post training. See also Dawson et al. [2023] for a comprehensive survey.

2 Problem Formulation

Consider the discrete-time system:
xk+1 = f(xk,uk), xk → X ↑ Rn, uk → U ↑ Rm, (1)

where X is open and f : X ↓ U ↔ X is locally Lipschitz. A control policy ω : X ↔ U for the
system can be obtained by solving an infinite-horizon discounted optimal control problem:

J→
ω (x0) = min

ω
Jω
ω (x0) :=

↑∑

k=0

ϑk ϖ(xk,ω(xk)),

s.t. xk+1 = f(xk,ω(xk)), xk → X , ω(xk) → U ,

(2)

where ϑ → (0, 1) is a discount factor and ϖ(x,u) is a stage cost (or reward in the case of maximization),
specifying the performance criterion.

Optimal control and reinforcement learning methods usually solve a problem like (2) to obtain a
policy ω and associated value function Jω

ω . We consider a deterministic problem in our theoretical
development for simplicity but apply our approach to stochastic problems in the evaluation (Section 5).
Note that, while reinforcement learning methods work with stochastic control policies during training,
only the mode of the final trained policy is used at test time, allowing us to treat it as deterministic.

Given a policy ω, we are interested in certifying whether it stabilizes the closed-loop system:
xk+1 = f(xk,ω(xk)). (3)

We assume ω(0n) = 0m, f(0n,0m) = 0n, ϖ(0n,0m) = 0, and 0n → X , so that the origin is an
equilibrium point of the system. Stability can be certified by identifying a Lyapunov function.
Definition 2.1 (Lyapunov Function). Consider the closed-loop system (3). A continuous function
V : X ↔ R↓0 is a Lyapunov function if it satisfies:

V (0n) = 0, V (x) > 0 ↗x → X \ {0n}, (4a)
V
(
f(x,ω(x))

)
↘ V (x) < 0 ↗x → X \ {0n}. (4b)

Lyapunov functions certify the asymptotic stability of the system, as stated in the following result.
Theorem 2.2 (Asymptotic Stability via a Lyapunov Function [Khalil, 1996, Theorem 3.3]). If
there exists a Lyapunov function V as in Definition 2.1, then the origin x = 0n is an asymptotically
stable equilibrium of the system (3).

When ω arises from (2), the corresponding value function Jω
ω is also available. We are interested in

whether Jω
ω can itself certify the stability of (3) or assist in constructing a certificate.

3 Lyapunov Stability Analysis for Linear Quadratic Problems

To understand the relationship between a discounted value function Jω
ω obtained from (2) and a

Lyapunov function V certifying stability of the closed-loop system (3), we first study a simple setting
with a linear system and quadratic stage cost.

Consider the discrete-time linear system: xk+1 = Axk +Buk, where xk → Rn, uk → Rm, and A,
B are known constant matrices.

Choosing the stage cost in (2) as ϖ(x,u) = x↔Qx + u↔Ru with Q = C↔C ≃ 0 and R ⇐ 0
leads to the discounted LQR problem [Anderson and Moore, 2007]. The optimal value function
J→
ω (x) = x↔Pωx is quadratic, where Pω solves the discounted Algebraic Riccati Equation (ARE):

Pω = A↔(Pω ↘PωB
(
ϑB↔PωB+R

)↗1
B↔Pω

)
A+Q. (5)

The corresponding optimal feedback gain is Kε
ω = ↘(ϑB↔PωB+R)↗1B↔PωA, which yields the

policy ω→
ω(xk) = Kε

ωxk. Under this policy, the closed-loop system evolves as

xk+1 = F→
ωxk, where F→

ω = A+BKε
ω . (6)
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Although J→
ω satisfies the discounted Bellman equation, it is well understood that it does not guarantee

Lyapunov decrease due to ϑ → (0, 1) [De Farias and Van Roy, 2003]. Moreover, verifying stability
by directly analyzing the eigenvalues of F→

ω and solving the discounted ARE (5) is nontrivial due to
its nonlinear dependence on ϑ. This motivates the idea [Postoyan et al., 2017] of constructing valid
Lyapunov functions by augmenting J→

ω with a residual term. To formalize this, we first state standard
assumptions that ensure the existence of a stabilizing policy and a well-defined value function.
Assumption 3.1. The pair (A,B) is stabilizable and the pair (A,C) is detectable.

The following result shows the existence of a Lyapunov certificate derived from the value function.
Theorem 3.2 (Lyapunov Stability via LMIs for Discounted LQR [Postoyan et al., 2017]). Suppose
Assumption 3.1 holds. Consider an optimal policy ω→

ω and value function J→
ω obtained from the LQR

problem with discount ϑ. Let P denote the solution to the undiscounted ARE in (5) (with ϑ = 1). If
there exist symmetric positive definite matrices S0,S1 ⇐ 0 and scalars ϱ,ω > 0 such that:

[
A↔S0A↘ S0 + S1 ↘ϱQ A↔S0B

B↔S0A B↔S0B↘ϱR

]
⇒ 0, ωP ⇒ S1, (7)

then the function V (x) := J→
ω (x) +

1
ϑx↔S0x is a Lyapunov function for the closed-loop system (6),

and certifies global exponential stability for any discount factor satisfying ϑ > ϑ
ϑ+ϖ .

Theorem 3.2 shows that while the discounted value function J→
ω may not satisfy the Lyapunov

condition on its own, it can be modified into a valid certificate when ϑ is sufficiently large. The
required residual term and a computable lower bound on ϑ are obtained by solving a set of LMIs.
However, this bound is often conservative compared to the true stability threshold ϑ→ obtained by
analyzing the closed-loop dynamics via the discounted ARE, as illustrated in the following example.
Example 3.3 ([Postoyan et al., 2017, Example 1]). Consider the scalar system xk+1 = 2xk + uk

with stage cost ϖ(x, u) = x2 + u2. The optimal policy is uk = Kε
ωxk, where

Kε
ω = ↘2

(
1 + 2

(
5ϑ ↘ 1 +

√
(5ϑ ↘ 1)2 + 4ϑ

)↗1)↗1
.

The closed-loop multiplier is F →
ω = 2+Kε

ω , and the origin is globally exponentially stable if and only
if |F →

ω | < 1, which is equivalent to ϑ > ϑ→ = 1/3. However, applying the LMIs from Theorem 3.2
yields a feasible solution for ϑ > 0.8090, which is significantly more conservative.

Example 3.3 highlights the limitation of classical Lyapunov analysis and motivates the development
of an alternative formulation with less conservative conditions for certifying stability.

4 Generalized Lyapunov Stability and Applications to Linear Systems

Building on the observation from Example 3.3, we introduce a generalized notion of Lyapunov
stability [Fürnsinn et al., 2023, Definition 2.2] that relaxes the classical pointwise decrease condition.
Definition 4.1 (Generalized Lyapunov Function). Consider the closed-loop system in (3). A
continuous function V : X ↔ R↓0 is a generalized Lyapunov function if it satisfies (4a) and there
exist an integer M → N>0 and state-dependent non-negative weights ς1(x), . . . ,ςM (x) such that

1

M

M∑

i=1

ςi(x) ⇑ 1, (8)

and, for any x → X \ {0n}, the following generalized decrease condition holds:

1

M

M∑

i=1

ςi(x)V (xi)↘ V (x) < 0, (9)

where xi+1 = f(xi,ω(xi)) with x0 = x.

Condition (9) generalizes the decrease requirement in (4b) by allowing temporary increases in V
over individual steps, provided that its weighted average decreases over a finite horizon of length M .
We state the stability guarantee provided by a generalized Lyapunov function in the next theorem.
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Theorem 4.2 (Asymptotic Stability via a Generalized Lyapunov Function). Consider the closed-
loop system in (3), and assume the policy ω is Lipschitz on X . If there exists a generalized Lyapunov
function V : X ↔ R↓0 as in Definition 4.1, then x = 0n is an asymptotically stable equilibrium.

See Appendix A for the proof (adapted from [Fürnsinn et al., 2023, Theorem 2]).
Remark 4.3 (Relation to k-Inductive Verification). The generalized Lyapunov condition in (9) can
be viewed through the lens of multi-step or k-inductive verification [Brain et al., 2015, Anand et al.,
2022, Wooding and Lavaei, 2024]. In particular, by selecting weights ς1 = · · · = ςk↗1 = 0 and
ςk = M , condition (9) reduces to

V (xt+k) ⇓ (1↘ ω)V (xt),

which is analogous to a k-step Lyapunov decrease condition used in k-inductive reasoning. Classical
k-induction requires a strict decrease at the final step while permitting bounded increases in interme-
diate steps. In contrast, Definition 4.1 enforces a decrease in a weighted average across multiple
steps, with the weights ςi chosen adaptively or learned during training. This distinction provides
additional flexibility, enabling certificates that may be easier to construct for nonlinear systems with
learned controllers.

Returning to the LQR setting in Section 3, we consider certifying the stability of (6) via a generalized
Lyapunov function. Building on Theorem 3.2, we augment J→

ω with a quadratic residual and require
the composite function to satisfy (9), leading to a new set of LMIs for stability certification.
Theorem 4.4 (Generalized Lyapunov Stability for Discounted LQR via LMIs). Suppose Assump-
tion 3.1 holds. Consider an optimal policy ω→

ω and value function J→
ω obtained from the LQR problem

with discount ϑ. Let P denote the solution to the undiscounted ARE in (5) (with ϑ = 1). If there
exist symmetric positive definite matrices S0,S1, . . . ,SM , scalars ϱ,ω1, . . . ,ωM > 0, and weights
ς1, . . . ,ςM ⇑ 0 satisfying

∑M
i=1 ςi ⇑ M , such that:

[
ϱ1
MA↔S0A↘ S0 + S1 ↘ϱQ ϱ1

MA↔S0B
ϱ1
MB↔S0A

ϱ1
MB↔S0B↘ϱR

]
⇒ 0, (10a)

[ϱi+1

M A↔S0A↘ Si+1 ↘ϱQ ϱi+1

M A↔S0B
ϱi+1

M B↔S0A
ϱi+1

M B↔S0B↘ϱR

]
⇒ 0, ↗i = 1, . . . ,M ↘ 1, (10b)

ωiP ⇒ Si, ↗i = 1, . . . ,M, (10c)
then the function

V (x) := J→
ω (x) +

1

ϱ
x↔S0x (11)

is a generalized Lyapunov function in the sense of Definition 4.1 (with constant weights), and certifies
that the origin is globally exponentially stable for the closed-loop system (6), provided that:

ϑ > max

(
ςMϱ

MωM
, . . . ,

ς2ϱ

Mω2
,

ς1ϱ

M(ϱ + ω1)

)
. (12)

The proof is provided in Appendix B.
Remark 4.5 (Feasibility of Multi-Step LMIs). Note that when ς1 = M and ςi = 0 for all
2 ⇓ i ⇓ M , Theorem 4.4 recovers the classical Lyapunov result in Theorem 3.2. Therefore, if the
original one-step LMIs (7) are feasible, then feasible solutions for (10) also exist.
Remark 4.6 (Choice of ςi Weights). While the multi-step formulation enables optimizing the
weights ς1, . . . ,ςM to minimize the certified lower bound on ϑ in (12), finding globally optimal
weights is challenging due to its non-convexity nature. In practice, heuristics such as grid search
for small M and random sampling with local refinements for larger M are sufficient to achieve
noticeable improvements over the one-step baseline.
Example 4.7 (Example 3.3 Revisited). We illustrate the benefits of the generalized multi-step LMIs
from Theorem 4.4 in Example 3.3. We first focus on the case M = 2. Figure 1 shows how the certified
bound on ϑ varies with the choice of weights ς1 and ς2, constrained by ς1 + ς2 = 2. Since the
undiscounted value function (ϑ = 1) satisfies the Lyapunov condition, this bound is capped at ϑ = 1.
The classical Lyapunov setting (ς1,ς2) = (2, 0) yields a conservative bound of ϑ > 0.8090, whereas
optimizing over ς1 and ς2 improves the bound to ϑ > 0.6229 at (ς1,ς2) = (1.54, 0.46). Another
important observation is that increasing M significantly reduces the certified lower bound on ϑ,
progressively approaching the true stability threshold ϑε = 1/3, as shown in Figure 2.
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Figure 1: Certified ω bound for M = 2. Figure 2: Certified ω bound versus M .

5 Nonlinear Systems: Stability Certification of RL Policies

Inspired by the treatment of linear systems described in Section 4, we formulate an approach to certify
stability of policies for nonlinear systems obtained by RL using a generalized Lyapunov function.
The key observation from Theorem 4.4 is that augmenting the optimal value function with a residual
term can result in a valid generalized Lyapunov function, as in (11). Here, we use the same idea
to form generalized Lyapunov functions for nonlinear systems with unknown dynamics, which is a
problem considered by RL. The value function and policy obtained by an RL algorithm are typically
parameterized by neural networks. Let ωRL be a pre-trained RL policy (e.g., obtained by [Schulman
et al., 2017, Haarnoja et al., 2018, Hansen et al., 2022]), and let JωRL

ω denote its corresponding learned
value function. We consider a generalized Lyapunov candidate as:

V (x;ε1) = JωRL
ω (x) + φ(x;ε1), (13)

where φ(x;ε1) is a neural residual correction. To allow more flexibility in the generalized Lyapunov
condition (9), we introduce a step-weighting network ς(x;ε2) → RM

↓0 that outputs non-negative
weights over a rollout horizon of length M . The weights are required to satisfy

∑M
i=1 ςi(x;ε2) ⇑ M .

These weights are then used to construct the generalized Lyapunov decrease condition:

F (xk) :=
1

M

M∑

i=1

ςi(xk;ε2)V (xk+i;ε1)↘ (1↘ ω̄)V (xk;ε1), (14)

where ω̄ → (0, 1) is a user-specified decay parameter. We train the networks φ(·;ε1) and ς(·;ε2)
jointly by minimizing a loss that penalizes violations of the generalized Lyapunov condition:

L(ε1,ε2) :=
1

N

N∑

i=1

ReLU
(
F (x(i)

k )
)
, (15)

where {x(i)
k }

N
i=1 are sampled initial states.

Remark 5.1 (Network Architecture). In practice, the learned value function JωRL
ω may not be

optimal, hence, may not satisfy JωRL
ω (0n) = 0. To ensure that the generalized Lyapunov candidate

satisfies V (0n;ε1) = 0 and is positive definite, we modify (13) as:

V (x;ε1) :=
∣∣JωRL

ω (x)↘ JωRL
ω (0n)

∣∣+ |φ(x;ε1)↘ φ(0n;ε1)|+ ε⇔x⇔2, (16)

where ε > 0 is a small constant (the term ε⇔x⇔2 enforces strict positive definiteness for x ↖= 0n and
improves numerical stability near the origin.) The step-weighting network ς(x;ε2) → RM

↓0 ends with
a softmax layer scaled by M , ensuring the output weights satisfy 1

M

∑M
i=1 ςi(x;ε2) = 1.

Remark 5.2 (Equilibrium Behavior). In practice, RL policies often converge to a neighborhood
near the origin rather than the origin itself. Thus, we train and verify the generalized Lyapunov
condition over the set X \ B(0n; ↼), where B(0n; ↼) denotes a ball of radius ↼ around the origin.

Training and Evaluation Setup. We evaluate our method on two standard RL control benchmarks
from Gymnasium [Towers et al., 2024] and the DeepMind Control Suite [Tassa et al., 2018]. RL
policies ωRL and their corresponding value functions JωRL

ω are trained using implementations from
Raffin et al. [2021], Hansen et al. [2022]. We collect a total of N rollout trajectories by simulating
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the closed-loop system under ωRL, with each trajectory ↽ (i) = {x(i)
k }

M
k=0 starting from a randomly

sampled initial state x(i)
0 . Additional training and architecture details are provided in Appendix C.

Inverted Pendulum Swingup. We consider the inverted pendulum environment from Towers et al.
[2024] with parameters m = 1, l = 1, g = 10, and control limits |u| ⇓ mgl

5 = 2. The state
space is [↘⇀,⇀)↓ [↘8, 8]. Due to tight torque limits, the pendulum must swing back and forth to
build momentum before reaching the upright position. This makes it challenging to synthesize a
policy with a Lyapunov certificate valid over the entire state space. Prior work [Yang et al., 2024,
Long et al., 2024] has shown that regions where stability can be verified are typically restricted to
small neighborhoods near the upright position, failing to cover the full swing-up trajectories. In
contrast, modern RL policies can discover effective swing-up behaviors but lack stability guarantees.
Our method bridges this gap: we take a trained SAC policy Haarnoja et al. [2018] and apply our
generalized Lyapunov function training with M = 15. Figure 3 shows the generalized Lyapunov
function values along several trajectories from different initial states. As expected, the function
exhibits non-monotonic behavior but shows an overall decline over the planning horizon. Figure 4
visualizes the Lyapunov function across the state space. Figure 5 plots the residual F (xk) defined in
(14), verifying that the generalized decrease condition is satisfied throughout the domain.

Figure 3: Generalized Lyapunov
function values along trajectories.

Figure 4: Generalized Lyapunov
function value over the state space.

Figure 5: Generalized Lyapunov de-
crease condition.

Cartpole Swingup. We consider the cartpole swing-up task from Tassa et al. [2018]. The system
state is represented as [x, cos(⇁), sin(⇁), ẋ, ⇁̇], where x is the cart position, ⇁ is the pole angle, and
the remaining terms are their velocities. The goal is to swing the pole upright ⇁ = 0 and stabilize the
position at x = 0. We use a TD-MPC policy [Hansen et al., 2022] and apply our certificate training
(15) with M = 20. Figure 6 visualize the generalized Lyapunov condition across three representative
2D slices of the state space, with the remaining two states fixed at zero. The generalized decrease
condition is satisfied throughout these slices, suggesting asymptotic stability of the RL policy.

Figure 6: Generalized Lyapunov decrease condition for the cartpole swing-up using a TD-MPC policy.

In addition to qualitative visualizations, we quantitatively evaluate our learned certificates by sampling
Ntest states from the full state space and checking whether (14) is satisfied. For each environment, we
train certificates for multiple RL policies (the PPO policy fails to stabilize the cartpole from some
initial states). As shown in Table 1, the condition holds for all test states in both environments.

Concentration of Learned Step-Weights. To further analyze the learned generalized Lyapunov
function, we examine the distribution of the learned step-weights across the horizon. For each trained
policy, the step-weight network was evaluated over 10, 000 uniformly sampled states from the state
space, and the normalized weights were averaged across samples. The weights were then grouped
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Table 1: Percentage of sampled test states satisfying F (xk) → 0 under different RL policies.
Environment RL Methods M Ntest % Satisfying F (xk) → 0

Inverted Pendulum PPO, SAC, TD-MPC 15 10,000 100%
Cartpole SAC, TD-MPC 20 1,000,000 100%

into five equal bins corresponding to different segments of the Lyapunov horizon. Table 2 summarizes
the fraction of the total weight assigned to each bin.

Table 2: Average fraction of total step-weight assigned to each portion of the rollout horizon. Results are
averaged over 10,000 test states for each policy.

Environment + Policy Steps 0–20% 20–40% 40–60% 60–80% 80–100%

Pendulum + PPO 12.3 11.4 16.7 21.8 37.8

Pendulum + SAC 10.2 13.3 17.5 22.6 36.4

Cartpole + SAC 10.8 10.5 16.2 25.6 36.1

Cartpole + TD-MPC 14.1 13.9 16.8 24.7 30.5

As shown in Table 2, the consistent concentration of weights toward the end of the horizon reveals a
key strategy learned by our method. By assigning lower weights to initial steps and higher weights to
later ones, the network effectively learns to tolerate initial non-monotonic transients in the Lyapunov
candidate, focusing instead on ensuring a decisive, weighted decrease over the full horizon. This
behavior empirically realizes the central benefit of the generalized Lyapunov condition: providing a
flexible yet sound basis for certifying complex neural policies.

6 Joint Synthesis of Stable Neural Policies and Certificates

So far, we addressed the certification of stability for fixed pre-trained control policies. In this
section, we consider joint synthesis of neural controllers and Lyapunov certificates and employ formal
verification inspired by Chang et al. [2019], Dai et al. [2021], Wu et al. [2023], Yang et al. [2024]. We
demonstrate that our generalized Lyapunov approach integrates naturally into this setting by replacing
the standard one-step decrease condition with the proposed multi-step, weighted formulation in (9).
Definition 6.1 (Region of Attraction). The region of attraction (ROA) R ↑ Rn of the (locally
asymptotically stable) origin for the discrete-time system (3) is the set of all points from which the
system trajectory converges to the origin, i.e., x0 → R implies limk↘↑ xk = 0n.

In general, precise characterizations of R are challenging to obtain and one instead looks for suitable
approximations. Here, we seek to jointly learn a policy ω(x;ϑ) and a certificate function V (x;ε1)
such that the closed-loop system xk+1 = f(xk,ως(xk)) is provably asymptotically stable and obtain
at the same time an inner approximation S of the ROA R. Yang et al. [2024] formalized it as a
constrained optimization that maximizes the volume of a Lyapunov sublevel set S = {x → Rn :
V (x) ⇓ ρ} under Lyapunov constraints

max
ε1,ϑ

Vol(S) (17a)

s.t. V (0n;ε1) = 0, V (x;ε1) > 0 ↗x → S \ {0n}, (17b)
V (xk+1;ε1)↘ (1↘ ω̄)V (xk;ε1) ⇓ 0 ↗xk → S, (17c)

where ω̄ → (0, 1) is a user-specified decay parameter. To utilize a generalized Lyapunov function, we
replace (17c) with the generalized M -step condition for each xk → S , with

∑M
i=1 ςi(xk) ⇑ M :

F (xk) :=
1

M

M∑

i=1

ςi(xk)V (xk+i;ε1)↘ (1↘ ω̄)V (xk;ε1) ⇓ 0, ςi(xk) ⇑ ς > 0, (18)

where ς → R>0 is a uniform lower bound on the weights. The condition (18) enables learning
certificates that tolerate non-monotonic behavior along a trajectory, but it no longer guarantees that S
is forward invariant. However, as Theorem 6.2 shows, S still defines a valid inner approximation of
the ROA and guarantees asymptotic stability of the origin.
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Theorem 6.2 (Asymptotic Stability Relative to S). If the optimization problem (17) is solved with
the generalized condition (18) instead of (17c), then S ↙ R.

See Appendix D for the proof.

Training Formulation. Following [Yang et al., 2024], we reformulate the problem (17) into a
learning objective by sampling states xk → X and penalizing violations of the Lyapunov conditions
using soft constraints. For each xk → D, we simulate M forward steps under the closed-loop
dynamics and compute the generalized Lyapunov residual F (xk) as defined in (18).

To enforce stability and domain constraints, we define the stability loss:

Lstab(xk) := ReLU (min {ReLU(F (xk)) + c0H(xk), ρ↘ V (xk,ε1)}) , (19)

where H(xk) :=
∑M

i=1 ⇔ReLU(xk+i ↘ xup) + ReLU(xlo ↘ xk+i)⇔1 penalizes violations of the
bounded domain X = {x | xlo ⇓ x ⇓ xup}. The inner min ensures that the generalized Lyapunov
decrease condition is only enforced inside the certified region S .

To expand the certifiable region, Yang et al. [2024] proposed a surrogate region loss Lregion :=∑N
j=1 ReLU (V (xj ;ε1)/ρ↘ 1), where the candidate states xj are obtained via random boundary

sampling or projected gradient descent (PGD) to minimize V (·;ε1). PGD is also used for falsification
by maximizing stability violations, generating additional training states for D.

The final training objective is L(ε1,ϑ) :=
∑

xk≃D Lstab(xk) + c1Lregion + c2⇔ε1,ϑ⇔1, where D

contains states sampled randomly and generated by falsification.
Remark 6.3. Although the theoretical framework (Theorem 4.2) supports trainable weights ςi(xk),
including neural network parameterizations (see Section 5), certifying stability under jointly learned
controllers, Lyapunov functions, and weights remains computationally challenging with existing tools
[Wang et al., 2021, Gao et al., 2013]. In practice, we fix ςi during training. For small values of M ,
we select the best-performing weight configuration via a simple grid search.

Verification Formulation. After training, we verify that the generalized decrease condition holds
within X using the ω-ε-CROWN verifier [Wang et al., 2021]. We formally certify Lyapunov stability
of the origin if the following holds for all xk → X :

(
↘F (xk) ⇑ 0 ∝

M∧

i=1

xk+i → X
)
′ (V (xk) ⇑ ρ) . (20)

As Theorem 6.2 implies, if (20) holds for all xk → X , then S is an inner approximation of R.

Evaluation. We evaluate our generalized Lyapunov synthesis approach on three systems presented
in [Yang et al., 2024]: inverted pendulum, path tracking, and 2D quadrotor (with a 6D state space).
Detailed system dynamics and neural network architectures used are provided in Appendix E.

Figures 7 and 8 show the certified stability regions S for different horizon lengths M . We use fixed
step weights (ς1,ς2, . . . ) selected via grid search: for the inverted pendulum, (0.4, 1.6) for M=2
and (0.3, 1.5, 1.2) for M=3; for path tracking, (0.4, 1.6) and (1.2, 1.2, 0.6), respectively. As shown
in the figures, multi-step training and verification yields consistently larger certifiable ROAs.

Table 3 reports the quantitative results, including the volume (S) and the verification time. The
volume is estimated via Monte Carlo integration: we sample n = 106 points in X and compute the
fraction satisfying V (x) ⇓ ρ, averaged across trials and scaled by the total domain volume. To assess
robustness, we repeat each experiment 10 times with different random seeds and report the mean and
standard deviation. The results confirm that our generalized stability formulation consistently certifies
larger ROA volumes compared to the classical one-step Lyapunov approach. This improvement
comes at the cost of longer verification times, since bounding multiple intermediate states and their
weighted combinations increases the complexity of bound propagation and branching decisions.

7 Conclusion, Limitations, and Future Work

We presented a new approach for constructing stability certificates for closed-loop systems under
policies obtained from optimal control and RL. We also showed that our method can be used for joint
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Figure 7: Certified ROAs for inverted pendulum. Figure 8: Certified ROAs for path-tracking.

Table 3: Certified region volume (left) and verification time (right) under different M -step Lyapunov training.
Abbreviations: I.P = Inverted Pendulum, P.T = Path Tracking, 2.Q = 2D Quadrotor.

System M = 1 M = 2 M = 3

I.P 42.9 ± 1.2 76.7 ± 1.3 89.2 ± 1.2
P.T 21.8 ± 0.6 23.6 ± 0.5 23.9 ± 0.5
2.Q 103.5 ± 1.8 109.1 ± 2.0 113.7 ± 2.0

(a) Certified ROA volume (S).

M = 1 M = 2 M = 3

11.7 ± 0.5 21.5 ± 0.8 39.2 ± 1.3
8.6 ± 0.5 19.5 ± 1.0 36.7 ± 1.3

2209.5 ± 72.6 3858.7 ± 112.4 5628.6 ± 185.9

(b) Verification time (seconds).

synthesis of neural policies and stability certificates. Rather than learning certificates from scratch, a
key insight is that the value function of a considered policy can be augmented with a residual term
to obtain a certificate candidate. We also replaced the classical Lyapunov decrease condition with a
generalized multi-step Lyapunov formulation, which provides asymptotical stability guarantees while
improving learning flexibility. Our theoretical and empirical results show that this perspective enables
construction of more effective stability certificates compared to traditional Lyapunov approaches.

Our approach has several limitations. First, the certification horizon M is fixed during training, and it
remains unclear how to determine the minimal viable M for a given system. Second, the method
has not yet been applied to high-dimensional systems such as humanoids or dexterous manipulators.
Third, formally verifying neural policies (e.g., from RL), along with learned state-dependent weights
and certificate functions, remains computationally challenging with existing tools.

This work opens up several promising directions for future research. One key avenue is to develop
partial-state stability certification, providing guarantees for task-relevant state components such as
torso height or velocity in humanoid locomotion rather than for the full system state. This approach
could improve both scalability and interpretability in high-dimensional control problems. The second
direction is to extend the generalized Lyapunov formulation to certify robust stability under bounded
perturbations and stochastic disturbances, drawing inspiration from input-to-state stability and robust
Lyapunov theory. The final direction is to further investigate the connection between generalized
Lyapunov conditions and optimality objectives, which may lead to new insights for reward design
and policy refinement in reinforcement learning.
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A Proof of Theorem 4.2

Proof. Attractivity. We first show attractivity. Fix any initial condition x0 → X \ {0} and let (xk)k↓0

be the corresponding trajectory. For each k ⇑ 0 choose an index

ϖ(k) →
{
1, . . . ,M

}
such that V

(
xk+φ(k)

)
< V (xk), (21)

whose existence is guaranteed by (9). Define the strictly increasing sequence of return indices

k0 := 0, kj+1 := kj + ϖ
(
kj
)
, j = 0, 1, . . . , (22)

for which, by construction,

0 < kj+1 ↘ kj ⇓ M, V
(
xkj+1

)
< V

(
xkj

)
, j = 0, 1, . . . . (23)

Due to the positive-definiteness of V , applying standard Lyapunov arguments on {V (xkj )}, we
conclude that limkj↘↑ V (xkj ) = 0.

Because the gaps satisfy kj+1 ↘ kj ⇓ M and V is continuous, we have

lim
k↘↑

V (xk) = 0. (24)

Finally, the positive-definiteness of V yields xk ↔ 0n as k ↔ ∞. Thus the origin is attractive.

Stability. Since both the system dynamics f and the policy ω are assumed to be Lipschitz, the
closed-loop map x ∈↔ f(x,ω(x)) is also Lipschitz on the forward-invariant set X . Let L > 0 denote
the Lipschitz constant. Then, for all 0 ⇓ i < M and k ⇑ 0,

⇔xk+i⇔ ⇓ L i
⇔xk⇔. (25)

Fix an arbitrary ε > 0 and choose

↼ :=
ε

LM↗1
. (26)

Consider any initial state with ⇔x0⇔ < ↼. By construction of the return indices kj in (22) we have
⇔xkj+1⇔ ⇓ ⇔xkj⇔ for all j, so in particular

⇔xkj⇔ < ↼, j = 0, 1, . . . . (27)

For an arbitrary time index k pick j such that kj ⇓ k < kj+M . Applying (25) with i = k↘kj < M
and (27) yields

⇔xk⇔ ⇓ LM↗1
⇔xkj⇔ < LM↗1 ↼ = ε.

Because ε was arbitrary, the ε–↼ condition holds and the origin is Lyapunov stable.

In conclusion, the origin is both attractive and Lyapunov–stable on X ; therefore it is asymptotically
stable relative to X .

Remark A.1 (Exponential Stability). Suppose the function V : X ↔ R↓0 satisfies the positive
definiteness condition in (4a), and there exist constants ε1,ε2, p > 0 such that

ε1⇔x⇔
p
⇓ V (x) ⇓ ε2⇔x⇔

p, ↗x → X . (28)

Suppose further that V satisfies the strict generalized decrease condition for all xk → X ,

1

M

M∑

i=1

ςi(xk)V (xk+i)↘ V (xk) ⇓ ↘ω(V (xk)), (29)

where ω : R↓0 ↔ R↓0 is a class-K function. Then the origin x = 0n is exponentially stable.
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B Proof of Theorem 4.4

For clarity, we present the detailed proof for the case M = 2. The general M -step case follows
analogously by extending the argument to multiple future steps.

Proof. We consider the generalized Lyapunov decrease condition over two steps:
1

2
(ς2V (xk+2) + ς1V (xk+1))↘ V (xk) < 0, (30)

where ς1,ς2 ⇑ 0 and ς1 + ς2 ⇑ 2.

Using the discounted Bellman equation for the optimal value function Vω ,

Vω(xk+1)↘ Vω(xk) = ↘ϑ↗1ϖ(xk,u
→
k) + (1↘ ϑ)ϑ↗1Vω(xk), (31)

we can recursively expand the two-step generalized decrease condition for Vω . Direct computation
yields:

1

2
(ς2Vω(xk+2) + ς1Vω(xk+1))↘ Vω(xk)

=
ς2

2
ϑ↗1Vω(xk+1) +

(ς1

2
ϑ↗1

↘ 1
)
Vω(xk)↘

ς1

2
ϑ↗1ϖ(xk,u

→
k)↘

ς2

2
ϑ↗1ϖ(xk+1,u

→
k+1)

⇓ [xk+1 xk]

[
ϱ2
2 ϑ↗1P 0

0 (ϱ1
2 ϑ↗1

↘ 1)P

] [
xk+1

xk

]
↘

ς2

2
ϖ(xk+1,u

→
k+1)↘

ς1

2
ϖ(xk,u

→
k) (32)

However, due to the presence of the discount factor ϑ → (0, 1), the value function Vω does not
naturally satisfy the required decrease condition.

Following the approach in [Postoyan et al., 2017], we introduce an auxiliary quadratic function:

W (x) =
1

ϱ
x↔S0x, (33)

where S0 ⇐ 0 and ϱ > 0 are design parameters.

Define the composite function:
Yω(x) := Vω(x) +W (x). (34)

Our goal is to ensure that Yω satisfies the generalized Lyapunov decrease condition in (30).

We compute the change in the auxiliary function W (x) over two steps:
1

2
(ς2W (xk+2) + ς1W (xk+1))↘W (xk)

=
1

ϱ

(ς2

2
x↔
k+2S0xk+2 +

ς1

2
x↔
k+1S0xk+1 ↘ x↔

k S0xk

)
. (35)

Expanding the system dynamics

xk+1 = Axk +Buk, xk+2 = Axk+1 +Buk+1, (36)

and substituting into (35), we express the change in W as
1

2
(ς2W (xk+2) + ς1W (xk+1))↘W (xk)

=
ς1

2ϱ

(
x↔
k (A

↔S0A↘ S0)xk + u↔
k B

↔S0Buk + 2x↔
k A

↔S0Buk

)

+
ς2

2ϱ

(
x↔
k+1A

↔S0Axk+1 + u↔
k+1B

↔S0Buk+1 + 2x↔
k+1A

↔S0Buk+1

)
. (37)

To upper bound this change, we introduce positive definite matrices S1,S2 ⇐ 0 and impose:
1

2
(ς2W (xk+2) + ς1W (xk+1))↘W (xk)

⇓ ↘
1

ϱ
x↔
k+1S2xk+1 ↘

1

ϱ
x↔
k S1xk +

ς1

2
ϖ(xk,u

→
k) +

ς2

2
ϖ(xk+1,u

→
k+1). (38)
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Combining the changes in Vω and W , we obtain:
1

2
(ς2Yω(xk+2) + ς1Yω(xk+1))↘ Yω(xk)

⇓ ↘x↔
k+1

(
1

ϱ
S2 ↘

ς2

2
ϑ↗1P

)
xk+1 ↘ x↔

k

(
1

ϱ
S1 ↘

(ς1

2
ϑ↗1

↘ 1
)
P

)
xk. (39)

Thus, to ensure strict decay of Yω , it suffices to require:
1

ϱ
S2 ↘

ς2

2
ϑ↗1P ⇐ 0, (40)

1

ϱ
S1 ↘

(ς1

2
ϑ↗1

↘ 1
)
P ⇐ 0. (41)

This leads to the requirement that ϑ must satisfy:

ϑ > max

(
ς2ϱ

2ω2
,

ς1ϱ

2(ϱ + ω1)

)
, (42)

where ω1,ω2 > 0 satisfy the comparison inequalities:
ω1P ⇒ S1, ω2P ⇒ S2. (43)

Furthermore, by comparing (37) and (38), the auxiliary matrices must satisfy the following LMIs:
[
ϱ1
2 A↔S0A↘ S0 + S1 ↘ϱQ ϱ1

2 A↔S0B
ϱ1
2 B↔S0A

ϱ1
2 B↔S0B↘ϱR

]
⇒ 0, (44)

[
ϱ2
2 A↔S0A↘ S2 ↘ϱQ ϱ2

2 A↔S0B
ϱ2
2 B↔S0A

ϱ2
2 B↔S0B↘ϱR

]
⇒ 0. (45)

This concludes the proof.

C RL Certificates Training Details

C.1 Network Architectures

We use feedforward neural networks with LeakyReLU activations for both the residual network
φ(·,ε1) and step-weighting network ς(·,ε2). The architectures are summarized in Table 4. The
residual network is initialized using Kaiming initialization [He et al., 2015], and all biases are
initialized to zero.

Table 4: Neural network architectures for the residual and step-weighting networks.

Component Architecture Output

Residual Network 3 layers, width 64 Scalar value
Step-weighting Network 3 layers, width 64 M -dimensional weights

C.2 Training Configuration

We train all networks using the Adam optimizer with an initial learning rate of 5 ↓ 10↗4, a Re-
duceLROnPlateau scheduler (factor 0.5, patience 500), and a batch size of 256 for 1000 epochs.
Gradients are clipped at 5.0. We set the decay parameter to ω̄ = 0.02 and the slack to ε = 0.01.
As discussed in Remark 5.2, we exclude a small ball around the origin during both training and
evaluation. Specifically, we set ↼ = 0.05 for the inverted pendulum and ↼ = 0.5 for the cartpole.

C.3 Compute Resources

All experiments were run on a single workstation with an NVIDIA RTX 4090 GPU, AMD Ryzen 9
7950X CPU, and 64 GB RAM. Training the Lyapunov certificate for the inverted pendulum takes
approximately 40 minutes, and for the cartpole environment around 4 hours. These durations include
all rollouts and training steps for both the residual and step-weight networks.
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D Proof of Theorem 6.2

For clarity, we prove the result for M = 2 and assume ς1,ς2 are constants.

Proof. We restate the assumptions. Let the closed-loop system be:

xk+1 = f(xk,ως(xk)),

and V : Rn
↔ R↓0 is a continuous function satisfying

V (0n) = 0, V (xk) > 0 ↗xk → S \ {0n}, (46)
1

2
(ς1V (xk+1) + ς2V (xk+2)) ⇓ (1↘ ω̄)V (xk), ↗xk → S, (47)

with ς1,ς2 > ς > 0 and ς1 + ς2 ⇑ 2.

Attractivity. The attractivity proof follows as in Appendix A, we conclude limk↘↑ xk = 0n.

Stability. We follow the classical ε–↼ Lyapunov proof in [Khalil, 1996, Thm. 3.3]. Fix an arbitrary
radius ε > 0 and define

m↼ := inf
⇐x⇐=↼

V (x). (48)

Because the ε-sphere {x → Rn : ⇔x⇔ = ε} is compact and V is continuous, the infimum is achieved;
hence we may write m↼ = min⇐x⇐=↼ V (x). Positive-definiteness of V further implies m↼ > 0.

Define
c :=

2(1↘ ω̄)

ς
> 0.

Because V is continuous at the origin and V (0) = 0, for every threshold ▷ > 0 there exists a radius
↼(▷) > 0 such that

⇔x⇔ < ↼(▷) =∋ V (x) < ▷.

Choose ▷ := m↼/c and set ↼ := ↼(m↼/c) gives

⇔x⇔ < ↼ =∋ V (x) <
m↼

c
. (49)

Now pick any index k with xk → S and ⇔xk⇔ < ↼. From (49) we have the bound

V (xk) <
m↼

c
. (50)

Using the two–step Lyapunov condition (47) and the fact that ς1,ς2 ⇑ ς, we obtain

ς(V (xk+1) + V (xk+2)) ⇓ 2(1↘ ω̄)V (xk) =∋ V (xk+i) ⇓ c V (xk), i = 1, 2. (51)

Combining (51) with (50) gives

V (xk+1) < m↼, V (xk+2) < m↼.

By definition of m↼, V (x) < m↼ implies ⇔x⇔ < ε; hence

⇔xk+1⇔ < ε, ⇔xk+2⇔ < ε. (52)

Equation (52) shows that, starting from any state inside the ↼-ball, the trajectory remains inside the
prescribed ε-ball.

Moreover, due to the strict decrease enforced by (47), it is not possible for both V (xk+1) ⇑ V (xk)
and V (xk+2) ⇑ V (xk) to hold simultaneously. Therefore, at least one of the two future states must
satisfy V (xk+i) < V (xk) for i → {1, 2}, hence the trajectory enters a strictly smaller sublevel set of
V within two steps, allowing the generalized Lyapunov condition to be re-applied.

We now distinguish two cases to formalize the re-application logic:

Case 1: xk+1 → S . Then the generalized condition can be re-applied at xk+1, and since V (xk+1) < ◁,
the next steps xk+2,xk+3 will also lie within the ◁-ball by repeating the same argument.

Case 2: xk+1 /→ S . Then xk+2 → S , and again V (xk+2) < ◁ ∋ ⇔xk+2⇔ < ◁, allowing the condition
to be re-applied at step k + 2.
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Conclusion. In both cases, the trajectory remains within the ◁-ball for all time, and the generalized
decrease condition continues to hold along the sequence. Therefore, for all ◁ > 0, there exists ↼ > 0
such that:

⇔x0⇔ < ↼ ∋ ⇔xk⇔ < ◁ ↗k ⇑ 0, (53)
proving Lyapunov stability of the origin relative to S .

Therefore, we conclude that S is a valid inner approximation of the ROA.

E System Dynamics for Formal Verification

We describe below the continuous-time dynamics, control constraints, and verification domain X

for each benchmark system used in our evaluations. All systems are discretized using explicit Euler
integration with a time step of !t = 0.05 s.

E.1 Inverted Pendulum

The inverted pendulum is modeled as a single-link rigid body rotating about its base, subject to
bounded torque control. The continuous-time dynamics are:

⇁̇ = 0, (54)

0̇ =
g

ϖ
sin(⇁)↘

ε

mϖ2
0 +

u

mϖ2
, (55)

where ⇁ is the pendulum angle (upright at ⇁ = 0), 0 is the angular velocity, and u is the control input.
We use the following parameters: gravity g = 9.81m/s2, mass m = 0.15 kg, length ϖ = 0.5m, and
damping coefficient ε = 0.1.

The control input is saturated to u → [↘6, 6] Nm. The state vector is x = [⇁,0]↔, and the verification
region is defined as:

Xpendulum :=
{
x → R2

∣∣ ⇁ → [↘12, 12], 0 → [↘12, 12]
}
.

E.2 Path Tracking

We consider a kinematic model for a ground vehicle tracking a circular path at constant forward
speed v. The system state is x = [de, ⇁e]↔, where de is the lateral distance to the reference path and
⇁e is the heading error. The control input u is the steering angle. The continuous-time dynamics are:

ḋe = v sin(⇁e), (56)

⇁̇e =
v

L
u↘

cos(⇁e)

R↘ de
, (57)

where L = 1m is the wheelbase length, R = 10m is the radius of the reference path, and v = 2m/s
is the constant forward speed. The control input is bounded by |u| ⇓ 0.84.

The verification domain is defined as:

Xpath :=
{
x → R2

∣∣ de → [↘3, 3], ⇁e → [↘3, 3]
}
.

E.3 2D Quadrotor

The 2D quadrotor models a rigid body with six states: horizontal and vertical positions x, z, pitch
angle ⇁, and their corresponding velocities ẋ, ż, ⇁̇. The system is controlled by two rotor thrusts
u1, u2, and the continuous-time dynamics are:

ẍ = ↘
1

m
sin(⇁)(u1 + u2), (58)

z̈ =
1

m
cos(⇁)(u1 + u2)↘ g, (59)

⇁̈ =
ϖ

I
(u1 ↘ u2), (60)

17



where m = 0.486 kg, ϖ = 0.25m, I = 0.00383 kg · m2, and g = 9.81m/s2. The state vector is
x = [x, z, ⇁, ẋ, ż, ⇁̇]↔. The control inputs are constrained to be within [0, 2.5 · ueq], where ueq = mg

2 .

The verification domain is defined as:

Xquadrotor :=
{
x → R6 : x → [↘0.75, 0.75]2 ↓


↘

↽
2 ,

↽
2


↓ [↘4, 4]2 ↓ [↘3, 3]

}
.

E.4 Neural Network Architectures and Training Parameters

We adopt the same network structures used in Yang et al. [2024]. The configurations are summarized
in Table 5. All networks use leaky ReLU activations.

Table 5: Neural network architecture for each system.

System Controller Network Lyapunov Network

Inverted Pendulum 4 layers, width 8 3 layers, widths [16, 16, 8]
Path Tracking 4 layers, width 8 Quadratic form
2D Quadrotor 2 layers, width 8 Quadratic form
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