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Abstract

We study the problem of designing a controller that satisfies an arbitrary number of affine inequalities at
every point in the state space. This is motivated by the fact that a variety of key control objectives, such
as stability, safety, and input saturation, are guaranteed by closed-loop systems whose controllers satisfy
such inequalities. Many works in the literature design such controllers as the solution to a state-dependent
quadratic program (QP) whose constraints are precisely the inequalities. When the input dimension and
number of constraints are high, computing a solution of this QP in real time can become computationally
burdensome. Additionally, the solution of such optimization problems is not smooth in general, which can
degrade the performance of the system. This paper provides a novel method to design a smooth controller
that satisfies an arbitrary number of affine constraints. The controller is given at every state as the minimizer
of a strictly convex function. To avoid computing the minimizer of such function in real time, we introduce
a method based on neural networks (NN) to approximate the controller. Remarkably, this NN can be used
to solve the controller design problem for any task with less than a fixed input dimension and number
of affine constraints, and is completely independent of the state dimension. This is why we refer to such
NN approximation as a NN-based universal formula for control. Additionally, we show that the NN-based
controller only needs to be trained with datapoints from a bounded set in the state space, which significantly
simplifies the training process. Various simulations showcase the performance of the proposed solution, and
also show that the NN-based controller can be used to warmstart an optimization scheme that refines the
approximation of the true controller in real time, significantly reducing the computational cost compared to
a generic initialization.
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1. Introduction is often challenging. For example, control Lya-

punov (respectively, barrier) functions define state-

Modern autonomous systems, ranging from self-
driving vehicles to aerospace systems, are usually
subject to a variety of operational requirements.
These include, but are not limited to, trajectory
tracking, disturbance rejection, stabilization, and
guaranteeing state and input constraints. Although
there exist technical tools to design controllers that
satisfy each of these specifications, combining them
into a single controller that meets all of them
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dependent input constraints that guarantee stabil-
ity (respectively, safety) of the underlying control
system. However, designing a smooth control law
that satisfies all such constraints and can be com-
puted efficiently in real time is significantly difficult.
Addressing this problem is the main motivation for
our work here.

1.1. Literature Review

Control Lyapunov Functions (CLFs) [1, 2| pro-
vide a powerful tool to achieve the stabilization of
nonlinear control systems. For control-affine sys-
tems, CLFs prescribe an affine inequality in the sys-
tem input at every state. By design, controllers that
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satisfy this inequality, such as the pointwise mini-
mum norm controller [3] or the CLF universal for-
mula [4], ensure stability of the closed-loop system.
More recently, Control Barrier Functions (CBFs) [5,
6, 7] have been introduced to achieve safety require-
ments for nonlinear control systems. Similarly to
CLFs, CBFs also prescribe affine inequalities in the
input at every state for control-affine systems, and
various safe control designs leveraging this inequal-
ity have been proposed [5, 8, 9]. Affine inequalities
in the input also arise if control authority is lim-
ited (as is always the case in practice), or if sta-
bility needs to be guaranteed in fixed time [10].
Often, it is common to face scenarios where the
controller must meet multiple objectives, which are
encoded by multiple affine inequalities in the input.
There are also a variety of works in the literature
that design controllers in this setting. For exam-
ple, the CLF-CBF QP in [6, 11] include both affine
constraints in a quadratic program (QP), whose
solution defines the desired controller. Alterna-
tively, [12] unites a CLF and a CBF into a unique
function, called control Lyapunov barrier function
(CLBF), and uses the known CLF universal for-
mula to derive a controller. Other control designs
include [13], which use penalty methods to impose
one of the inequalities as a hard constraint and the
other one as a soft constraint, [14], which defines a
formula based on the centroids of the two feasible
sets defined by the two inequalities, or [15], where
different CBF constraints are united into a single
one by designing a smooth approximation of the
intersection of the different safe sets.

However, the aforementioned approaches only
lead to a controller that can be obtained in closed-
form or in a computationally tractable manner for
a low number of constraints [16]. To the best
of our knowledge, there does not exist an ap-
proach in the literature for obtaining a controller
with such properties for an arbitrary number of
state-dependent affine constraints. This problem
raises intertwined theoretical, practical, and com-
putational challenges. Theoretically, the solution
of the QP should be computed at every state,
which is impossible in practice. This has led to
the use sampled-data implementations of such con-
trollers [17, 18, 19]. Even with a sampled-data
implementation, from a computational standpoint,
solving the QP in real time becomes burdensome
and the mismatch between the computed solution
and the actual one may degrade system perfor-
mance.

The problem of designing such a controller is even
more challenging if it is required to be smooth. The
use of smooth controllers is motivated by theoretical
reasons (e.g., existence and uniqueness of solutions
and use in backstepping designs [20]) and practical
considerations (e.g., avoidance of chattering behav-
ior in digital platforms). Although the existence of
an infinitely-times differentiable controller satisfy-
ing an arbitrary number of affine state-dependent
constraints is guaranteed by [14, Proposition 3.1], a
constructive method for finding such a controller is
lacking. In fact, optimization-based designs such
as the QP in [6] can fail to be locally Lipschitz
(as exemplified by Robinson’s counterexample [21])
or even continuous [22], and additional constraint
qualifications are needed in order to ensure their
regularity [21, 23].

Our work here is also related to a line of research
that uses neural networks (NNs) to approximate the
solution of model predictive control (MPC) prob-
lems [24, 25, 26, 27|. In the case of linear dynamics
and affine input and state constraints, the solution
of such MPC problem is known [28] to be piece-
wise affine, but computing it explicitly is difficult
because the number of regions grows exponentially
with the number of constraints. These works show
that an approximate solution computed offline with
a NN can be used to warmstart the MPC optimiza-
tion problem online and considerably speed up its
computation.

Statement of Contributions

We study the problem of designing a smooth con-
troller that satisfies an arbitrary number of affine
constraints at every point in the state space. In our
first contribution we introduce a novel controller
that generalizes the CLF universal formula and sat-
isfies all the affine inequalities. We show that such
controller is smooth, and can be computed as the
minimizer of a strictly convex function.

Since a closed-form expression for the controller
is not available for cases with more than one con-
straint, our second contribution consists of a nu-
merical scheme to approximate the controller us-
ing NNs. Remarkably, we show that a single neu-
ral network (appropriately trained with parameters
equal to the coefficients of the affine inequalities) is
enough to obtain controllers for any task involv-
ing systems with the same input dimension and
the same number of inequalities, regardless of the
state dimension. Additionally, we show that such
NN approximation can be obtained by only sam-



pling data points over a compact set of parameters,
and that the NN-based approximate controller is
smooth (by taking the activation functions of the
NN to be smooth). Although such approximation is
not guaranteed to be close to the true controller and
to satisfy the inequalities at every point, the univer-
sal approximation theorem of NNs ensures that it
becomes an arbitrarily good approximation of the
true controller as the number of parameters of the
NN increases. Additionally, using recent advances
in training NNs with hard constraints, the NN can
be trained so that the NN-based controller satisfies
the affine constraints at every point by construc-
tion, although in that case it is not guaranteed to
be smooth. Furthermore, in real-time control ap-
plications, the NN approximations can be used to
warmstart an optimization scheme to compute the
true controller with higher accuracy.

Finally, in our third contribution we use the NN
approximations in two safe stabilization tasks, both
directly and as a warmstart of an optimization
scheme to compute the true controller value. We
show that the use of the NN significantly reduces
the execution time of the controller compared to
other standard controllers in the literature such as
the minimum-norm CLF-CBF QP controller [6],
which need to be computed online by solving an
optimization problem at every state.

Notation

We denote by Z~ and R the set of positive inte-
gers and real numbers, respectively. For N € Z,
we write [N] = {1,...,N}. Given | € Z-o and
S C R”, the set of [-times continuously differen-
tiable functions in S is denoted by C!(S). Vec-
tors are represented by boldface symbols whereas
scalars are represented by non-boldface symbols.
The zero vector in R™ is denoted by 0,, and the
identity matrix of dimension n x n, by I,,. Given
x € R", ||x]|| denotes its Euclidean norm. A func-
tion B : R — R is of class K if 8(0) = 0 and
is strictly increasing. If moreover, tlggo B(t) = oo

and t_l)ir_n B(t) = —oo, then S is of extended class

Koo. A function V : R™ — R is positive definite
it V(0,,) = 0,, and V(x) > 0 for all x # 0,. The
ball centered at p € R™ with radius r > 0 is de-
noted by B.(p). Let F : R™ — R” be a locally
Lipschitz vector field and consider the dynamical
system x = F'(x). Local Lipschitzness of F' ensures
that, for every initial condition xg € R", there ex-
ists T > 0 and a unique trajectory z : [0,7] — R"
such that x(0) = x¢ and #(t) = F(z(t)). If all

solutions exist for all ¢ > 0, then we say the dy-
namical system is forward complete. In this case,
we let ®; : R — R" denote the flow map, defined
by ®,(x) = z(t), where x(t) is the unique solu-
tion of the dynamical system starting at z(0) = x.
Given a forward complete dynamical system, a set
K C R™ is (positively) forward invariant if x € K
implies that ®;(x) € K for all ¢t > 0. A point p is
Lyapunov stable if, for every open set U contain-
ing p, there exists an open set U also containing p
such that for all x € U, ®,(x) € U for all ¢ > 0.
An equilibrium point p is asymptotically stable if
it is Lyapunov stable and there exists an open set
U containing p such that ®;(x) — p as t — oo for
allx € U.

2. Problem Statement

Consider a nonlinear control-affine system of the
form

% = f(x) +g(x)u, (1)

where f : R" — R™ and g : R™ — R™*™ are locally
Lipschitz, with x € R™ the state and u € R™ the
input. We assume that f(0,) = 0,, so that the
origin is an equilibrium of the unforced system. The
following motivating examples provide instances on
how state-dependent affine inequalities in the input
arise when designing controllers aimed at meeting
specific control objectives.

Example 2.1. (Control Lyapunov function for sta-
bilization): A continuously differentiable positive
definite function V : R™ — R with compact level
sets is a control Lyapunov function (CLF) if there
exists a neighborhood D of the origin such that for
all x € D, there exists u € R™ such that

VV(x) " f(x) + VV(x)Tg(x)u+W(x) <0, (2)

where W : R™ — R is a positive definite function.
A locally Lipschitz controller k : R® — R™ such
that u = k(x) satisfies the inequality (2) at every
x € D renders the origin of the closed-loop system
x = f(x) + g(x)k(x) asymptotically stable. .

Example 2.2. (Control barrier function for ensur-
ing safety): Let C C R™ be a safe set of interest, and
suppose that C is given by the O-superlevel set of a
continuously differentiable function h : R®™ — R,
i.e., C = {x € R" : h(x) > 0}. This function is



a control barrier function (CBF) of C if, for every
x € C, there exists u € R™ such that

Vh(x)" f(x) + Vh(x)"g(x)u+ a(h(x)) > 0, (3)

where o : R — R is an extended class Koo function.
A locally Lipschitz controller k : R — R™ such
that u = k(x) satisfies the inequality (3) at every
x € C renders the set C forward invariant for the
closed-loop system x = f(x) + g(x)k(x). .

Examples 2.1 and 2.2 provide two illustrations
of control-theoretic properties (stability and safety)
that can be achieved by designing controllers that
satisfy state-dependent affine inequalities in the in-
put. In general, one can have an arbitrary num-
ber of such affine inequalities to encode, for in-
stance, safety constraints related to collision avoid-
ance with different obstacles in the environment.

Formally, let N € Zso, and for i € [N], let
a; : R" = R, b; : R* — R™ be C!(R") functions
for some [ € Z>(. Let F be the set of points where
the inequalities {a;(x) + b;(x) "u < 0};¢[n) are si-
multaneously strictly feasible, i.e.,

F:={xeR":JuecR™ s.t.
ai(x) +b;(x) Tu < 0, Vi € [N]}.
Since F is the projection in R™ of the open set
{(x,u) € R"xR™ : a;(x)+b;i(x) Tu <0, Vi € [N]},
F is also open. In the case where N = 2 and the
two inequalities correspond to the strict versions of

the CLF and CBF inequalities (2) and (3), respec-
tively, we have

a1(x) = VV(x) " f(x) + W(x),
bi(x) = g(x) VV(x),
az(x) = =Vh(x)" f(x) - a(h(x)),
ba(x) = —g(x) " Vh(x).

In this case, the property that F # () is known
as strict compatibility of the CLF and CBF pair,
cf. [14, 29]. [14, Proposition 3.1] is an extension of
Artstein’s Theorem (cf. [30]) showing that if F is
non-empty, there exists a C* controller k : F — R™
such that a;(x) + b;(x) "k(x) < 0 for all x € F and
all ¢ € [N]. The proof of this result, however, is not
constructive, which is undesirable for the real-time
control of the nonlinear system (1). Hence, in this
paper we set out to solve the following problem.

Problem 1. Design a smooth controller that sat-
isfies the constraints a;(x) + b;(x)Tu < 0 for all
i € [N] and all x € F.

3. A Universal Formula for an Arbitrary
Number of Affine Constraints

In this section we introduce a smooth uni-
versal formula for a controller satisfying an
arbitrary number of affine inequalities. Let
Ai,..., Ay € R and By,...,By € R™. Let

= (A1,...,An,By1,...,By) and define ICp
{k € R™: A; + B[k < 0, Vi € [N]}. Note that
Kp is a convex polytope. Now, define the function
Jp : Kp = R as

N
-y IB:* + [k (4)
— 2(4; 2(4; +B]k)’

Our first result shows that Jp is strictly convex.

Proposition 3.1. (Strict convexity): Let p €
RNTMN - The function Jy is strictly convex in the
convexr domain Kp.

Proof. Let J; p : P — R be defined as

B[ -+ [1k] |

Jin(k) = — .
»(k) 2(A; + B/ k)

Note that the Hessian of J; p, is given by

-r

V2iiok) = ———c—,
» = B

where I' = (4; + B/ k)?I,, — (kB + B;k")(A; +

B/ k) + (|B;||*> + | k||?)B;B/ . Let us show that I'

is positive definite, i.e., x ' I'x > 0 whenever x €

R™\{0,,}. This is true iff

(A; + B/ k)?||Ix|*> — 2(A; + B/ k)(B, k)(k "x)+
(IBI7 + I1k|1*)(B; x)* > 0,

for all x € R™\{0,,}. Let z = B/ x. We want to
show that the scalar quadratic function in z given
by (A; + B K)?/[x||2 — 2(4; + B K)(K )z + (1 +
lk||?)2? is strictly positive for all x € R™\{0,,}.
Note that the discriminant of the quadratic is

By the Cauchy-Schwartz inequality, (k'x)?2

[[*[[x[|.  Therefore, (k'x)* — ||k|*||x|?

|k|I?|B;||* < 0 unless B; = 0,,, (in which case (A4;+
B/ k)?||x2—2(4;+B;] k)(k "x)z+(1+]k[|?)2% > 0
for x # 0,) or x = 0,,,. This implies that A < 0
unless x = 0,, and therefore the quadratic (A; +
B k)?[|x[* — 2(4; + B k)(k"x)z + (1 + [[k[[*)z*

A=4(AA+BTR) (k)2 = K212~ 2]/ B4]?)
<



is strictly positive for all x € R™\{0,,}. Hence, I'
is positive definite, which means that V2J; ,(k) is
positive definite for all k € K, and J; ; is strictly
convex in . Since Jp(k) = Zi\il Jip(k), Jp is the
sum of strictly convex functions and is therefore
also strictly convex in Kp. O

Since Jp is strictly convex in K, by Proposi-
tion 3.1, and Jp goes to infinity as it approaches
the boundary of Ky, it follows that Jp has a unique
minimizer in Kp. Let

P={pecRVtTN [, #£0}.

Then, we let £* : P — R™ be the function mapping
every tuple p € P to the unique minimizer of J; in
Kp. The following result shows that the mapping
k* is smooth.

Lemma 3.2. (Smoothness): The function k* is

C(P).

Proof. Since p € P, Kp # 0. First note that since
lim Jp(k) = oo, k*(p) is finite for all p. Since

k]| —o00

Jp is strictly convex, continuous in K, and k*(p)
is its unique minimizer, there exist neighborhoods
N1, N2 of k*(p) and a constant M > 0 such that
if k € Ny then Jp(k) < M, and if k ¢ N, then
Jp(k) > 2M. Now, since Jp is continuous with
respect to p, there exists a neighborhood Ny of p
such that for any p € Np, we have that if k € My
then Jp(k) < 3 and if k ¢ A then Jp (k) > 331,
Hence, k*(p) € N; for all p € Np. Now, define
the function J : N1 x N1 — R as J(p,k) = Jp(k).
Note that since £* is the minimizer of Jp, it satis-
fies the equation 27 (p,k*(p)) = 0,, for all p € Nj.
Additionally, note that since Jp is strictly con-
vex as shown in Proposition 3.1, gz—i(ﬁ,k*(}’))) is
non-singular. Now, by the Implicit Function Theo-
rem [31, Proposition 1B.5], since J is C*, k* is also
C* at p. This argument is valid for any p € P. O

Therefore, k* is C* and satisfies the constraints
A;+B]Ek*(p) < 0foralli € [N] and p € P. Define
now the controller uv* : ¥ — R™ by

,aN(X),bl(X), .. ,bN(X))
()

Note that x € F  implies  that
(a1(x),...,an(x),b1(X),...,bn(x)) € P. There-
fore, u* is C!/(F) and satisfies the constraints
a;(x) + b;(x) Tu*(x) for all i € [N] and x € F,
solving Problem 1.

u*(x) = k*(a1(x), ...

Remark 3.3. (Connection with CLF universal for-
mula): A noteworthy property of the controller u*
is that when N = 1, m = 1, and the constraint
corresponds to a CLF constraint, i.e., a1(x) =
VV(x)Tf(x) + W(x), bi(x) = VV(x)Tg(x) fo

some CLF'V and positive definite function W, then
k* equals the well-known universal formula [4] for
stabilization. Indeed, the minimizer of Jp can be
found by solving the nonlinear equation VJy(k) =
_Al"fBlk? + 2(AB11++Bklk)2Bl = 0. By solving the re-
sulting quadratic equation, one obtains the CLF
universal formula:

Ay++/A2+ B .
SV By #£0,

k*(A1,By) =
0, otherwise. °
Remark 3.4. (Dynamical controller): Instead of
computing the minimizer u* at every state, one can
choose to run the following dynamical controller:

x = f(x) +9(x)u, (6a)
oJ
a= *T%(X, u), (6b)
where J(x,u) = Jx(u) and 7 > 0 is a de-

sign parameter. Then, by using singular pertur-
bation theory [32, Chapter 11], one can show that
for sufficiently large T, the evolution of the state
variable x according to (6) can be made arbitrar-
ily close to the evolution of the state variable for

%= f(x) + g(x)u (x). .

Remark 3.5. (Alternative universal formula):
Given a vector of positive weights w € RY (i.e.,
with components w; > 0 for alli € [N]), one can in-
stead consider a variation of the function Jp where
each of the summands is assigned different weights:

N

WLy 1Bill* + [I%]
/ (k)__;wi2(Ai+BiTk)'

By following an argument analogous to the one
in the proof of Proposition 3.1, it follows that
Jy is strictly conver in Ky and therefore it has
a unique minimizer in Ky, which defines an al-
ternative smooth function satisfying all the con-
straints. °

The following result shows that for safe stabiliza-
tion problems, even though v* is not defined at the
origin, trajectories in its neighborhood converge to
it.



Proposition 3.6. (Convergence to the origin): Let
V:R*" - R be a CLF, h : R* — R be a
CBF of a safe set C C R". Let N = 2 and
define ai(x) = VV(x)Tf(x) + W(x), bi(x) =
G TYV(X), ax(x) = —Vh(Q)T f(x) — ah(x),
ba(x) = —g(x)"Vh(x). Suppose that there erists
k > 0 such that

Op={xcR":0<V(x)<k}CF.

Let xg € O with V(xo) = k < k and consider the
mazimal solution of x = f(x)+g(x)u*(x) in F with
initial condition at xo. We let x(+;%0) be such solu-
tion and [0,T) its interval of existence (with either
T =00 orT <o0). Then, we have

lim x(¢;x0) = 0y,
t—T
Proof. Suppose first that there exists a compact
subset C' C F such that z(t) € C for all t € [0,T).
Then, by [1, Proposition C.3.6], it follows that T =
0o. Since x(+;Xp) is precompact, the omega limit
set of x¢, denoted as w™(xg) is non-empty. Since V
is a LaSalle function in Oy, for all £ € wt(xq) we
have V(€¢) = 0. However, since £ € wt(xq) € O,
we have V(!;“) < 0, reaching a contradiction. There-
fore, there exists no such set C. Let ¢ > 0 and
consider the set Cep, = {x € R" : ¢ < V(x) < k}.
Since C¢ i, is a compact set contained in F, there ex-
ists t; € (0,T) such that x(t1;x0) ¢ Ce . Let to =
maxs{s < t1 : x(s;x0) € Ce Vs < t}. First note
that V(x(tg; %)) = k is impossible. Indeed, for
such a to we have V (x(to; x0)) < 0, so V(x(t;x0)) >
V(x(t1;%0)) for all t € [ty — € tg] for some small
enough € > 0 (by continuity of V), and therefore
V(x(t;x0)) > k for t € [to — € to], which contra-
dicts the definition of ty. Since V(x(to;%0)) = k
is impossible, we necessarily have V (x(to;x0)) = e.
Since V (x(t; o)) < 0 for all ¢ € [0,T), we conclude
that V(x(t;x0)) < € for all t € (tg,T'). Since € is ar-
bitrary, we necessarily have tli_)rrjlﬂ x(t;x9) =0,. O

Moving beyond the case of one constraint dis-
cussed in Remark 3.3, the controller u* is not
available in closed form if multiple constraints are
present, and therefore its implementation requires
solving a minimization problem at every x. Al-
though Jj, is strictly convex and therefore u*(x) can
be found by using off-the-shelf convex solvers, this
computation needs to be done at every state in con-
tinuous time, which is not possible in practice. In-
stead, one often implements a sample-and-hold ver-
sion of the controller at a sufficiently high frequency.

However, computing the minimizers at such high
frequencies becomes computationally burdensome
and puts into question the validity of the conver-
gence guarantees. This motivates our ensuing dis-
cussion.

4. Neural Network Approximation of the
Universal Formula

In this section, we present an approach to avoid
the computational burden of solving a minimization
problem at every state to compute the controller u*
defined in (5). Our approach is based on comput-
ing an approximation of the controller £* using a
NN. This NN needs to be trained with input-output
pairs of the form (p, k*(p)), with p € P ¢ RVN+™mN,
However, this presents a challenge because the set
P is potentially unbounded, which means that the
set of possible inputs p to the NN is unbounded.
The following result resolves this issue by showing
that the values of J can be inferred by only looking
at a bounded subset of RN*+™N,

Lemma 4.1. (Scaling property of cost function):
Lgt p = (Al,.. 71£1£\/',B1,...,B]\]) S P, q =
(Aq,.. AN,Bl7 ...,Bn,r) € P x[0,1] and define
the functwn J Ks = R as

Z 1B |2 + r{lk*
2(4; + B/ k)

Then, Jq is strictly conver in Kg. Furthermore,
given P = (A]_, N AN7 B]_7 ey BN)7 let

T

MR
where M = ma)g{|A1|a BERE) |AN|a |||B1Ha EERE) HBN||7 1}
Then Jp(k) = Jq(p)(k) for allk € Kp. As a conse-
quence, if k* : P x [0,1] — R™ denotes the function
that maps each q € P x [0,1] to the minimizer of

Jqy, we have k*(p) = k*(q(p)) for all p € Kp.

Proof. The proof that Jq is strictly convex follows
an argument analogous to that of Proposition 3.1.

Given p = (44,...,AN,B1,...,Byn), note that
N HB H ||kH2
- +
Ta K = =M 250 B g

=1

N
||B 2 + ||k|?
E = J, (k).
— 2(A; + Bk) p(k)

Therefore, the minimizers of Jf, and Jp are the
same. O



Lemma 4.1 shows that by approximating k* with
valuesof qin 7 = ([—1, 1] x B1(0,,)V)NPx[0, 1],
we can recover any value of k*. Therefore, our ap-
proach consists in approximating the minimizer of
jq with a NN for q in the set 7. Since P is an
open set, 7 is not compact. Given that the univer-
sal approximation theorem of neural networks [33]
is only valid in compact sets, it does not apply to
T. However, for any compact subset of 7 (which we
can take to be arbitrarily close to T'), the universal
approximation theorem ensures that a NN with a
sufficiently large number of parameters can approxi-
mate k* arbitrarily well. Note also that by choosing
the activation functions of the NN to be smooth,
the resulting approximation of k* is C*°(P), and
therefore the approximation of the controller v* is

cl(P).

Remark 4.2. (Applicability for multiple con-
trollers):  Note that once we have obtained
an approximation of k*, we can use it in
many different instantiations of the functions
a1,-.-,aN,b1,...,0N, i.e., in a variety of differ-
ent control problems. The NN only depends on the
number of constraints N and the dimension of the
input m, but remarkably, does not depend on n,
the dimension of the state. In fact, given a NN
trained with a given input dimension m and num-
ber of constraints N, all control problems with input
dimension at most m and at most N constraints can
be solved with the same NN (in case the input di-
mension is strictly less than m or the number of
constraints is strictly less than N one can simply
assign the coefficients of the additional inputs or
constraints so that they are trivially satisfied). In
particular, this implies the remarkable fact that all
safe stabilization problems for systems with a given
input dimension can be solved with the same NN
approximation. °

Remark 4.3. (Robustness): If one of the inequal-
ities corresponds to a CLF inequality (2), and the
corresponding CLF is an input-to-state stable (I5S)
Lyapunov function for the system (1) (cf. [34, Sec-
tion 3.3]), then if we let k be an approzimated
version of the controller k* (like the one obtained
by approximating it with a NN), and the bound
|k(x) — k*(x)|| < o holds for all x € X, with X
some compact set, we have

VYV (x)T(f(x) + g(x)k(x))
= TV (f(x) + g0k (x) +7(0),

for some class Ko function . A similar result
holds if the inequality is a CBF inequality (3) and
the CBF defining it is an input-to-state safe (ISSf)
barrier function for the system (1) [35, Theorem
1]. Therefore, CLF and CBF inequalities are ro-
bust to approzimation errors induced by the NN and
therefore the NN-based controller, when applied to
safety and stability tasks, makes the closed-loop sys-
tem close to safe and stable, respectively. °

Remark 4.4. (Hard-constrained NN): We should
also point out that the recently introduced HardNet
method [36] shows that, by including a projection
step at the output layer of the NN, the NN pre-
dictions can be guaranteed to satisfy a set of affine
constraints. Although the universal approximation
guarantees are retained, the projection operation in
the last layer makes the controller obtained from it
locally Lipschitz but not C'(F), for 1> 1. .

5. Simulations

In this section we illustrate our approach in differ-
ent simulation examples. We train a NN to approx-
imate k* as detailed in Section 4. We focus on the
case of m = 2 and N = 2. We use a feedforward NN
with 4 layers (with input dimension 7 and output
dimension 2), each with 64 neurons, and we use the
Sigmoid Linear Unit (SiLU) activation function ¢ :
R — R given by ¢(s) = fEwey g [37], which is a
smooth approximation of the ReLU activation func-
tion. The NN is trained with the Adam optimizer
with learning rate 3 x 10~ for 2000 epochs using a
dataset with 25113 data points. Each data point q
consists of a uniformly randomly sampled point in
([-1,1] x B1(02) x [-1,1] x B1(02) x [0,1])) NP C
R” (to do so, we first uniformly sample a point
from [—1,1] x B1(02) x [-1,1] x B1(02) x [0,1] and
then check whether the corresponding 2 inequali-
ties are feasible with the QP solver of the cvxpy
library in Python [38]), along with the correspond-
ing minimizer of the function jq. We compute such
minimizer up to a tolerance of 10~% by numeri-
cally integrating the gradient flow k = —qu(k)
using Python’s solve_ivp function in the SciPy li-
brary [39]. We also train the same NN architecture
with the HardNet method from [36], which includes
a projection step at the output layer and guaran-
tees that the NN predictions satisfy the two affine
constraints (cf. Remark 4.4). All simulations were
run in an Ubuntu PC with Intel Core i9-13900K 3
GHz 24-Core Processor.



Example 5.1. (Safe stabilization of single-
integrator system): Consider a single integrator on
R? i.e., & = uy,§ = uy. Suppose that our goal is
to design a controller that stabilizes the system to
the origin and stays in the safe set C = {(z,y) €
R?: hy(z,y) =22 + (y — 2.5)2 =1 >0, ha(z,y) =
(z+2)2+(y+2?>-1>0, ha(z,y) = (z—2)* +
(y+2)? — 1> 0}. Note that V(z,y) = 3(z* + y?)
is a CLF and h(z,y) := hi(z,y)h2(x,y)hs(z,y) is
a CBF of C. Take the positive definite function W
in (2) to be W(z,y) = 0.1(z%>+y?) and the extended
class Koo function o in (3) to be a(s) = s. Now,
using the inequalities (2), (3), we define a1(x,y) =
0.1(z* +y?), bi(z,y) = (z,y), az(2,y) = —h(z,y),
and ba(x,y) = —Vh(x,y). By using [13, Lemma
5.2], we can show that the inequalities ay(x,y) +
bi(z,y)Tu < 0, as(w,y) + ba(z,y) 'u < 0 are si-
multaneously feasible at all points in C not satis-
fying %(m,y)y = g—Z(x,y)m. More explicitely, the
inequalities will be satisfied if there is a pair (ug, uy)
so that the entries of

)+ () ()

are both negative, which can achieved unless the de-
terminant of the matriz is zero. Many points in the
set where the determinant is zero are also in F, but
this is sufficient to show that F consists of all points
in C except for a set of measure zero. Figure 1 com-
pares the trajectories obtained by directly applying
the NN-based controller in closed-loop and using it
to warmstart an optimization scheme to compute
u* online. We observe that the NN-based controller
induces trajectories that are safe and converge to a
small neighborhood around the origin, for the cho-
sen initial conditions. Instead, the trajectories that
use a controller obtained by numerically computing
u* online with the NN controller as a warmstart
asymptotically converge to the origin (instead of a
neighborhood of it) and are also safe. The same is
true for the controllers obtained from the HardNet
method, the CLF-CBF QP, or the computation of
u* online with the CLF-CBF QP as a warmstart.
Table 1, top row reports the execution times of the
various considered controllers. The NN-based con-
troller is the fastest, but does not possess safety and
stability guarantees. The HardNet-based controller
is one order of magnitude slower but has safety and
stability guarantees by construction, although no op-
timality guarantees. The CLF-CBF QP controller
and the controllers obtained by computing u* on-
line are two orders of magnitude slower than the

Figure 1: (left) Trajectories of the closed-loop system ob-
tained from the neural network based controller for Exam-
ple 5.1. (right) Trajectories of the closed-loop system ob-
tained from numerically finding the controller v* online,
warmstarting the solver with the NN-based controller for
Example 5.1. Initial conditions are denoted by red crosses,
the origin is the black dot, and the green region denotes the
unsafe set.

NN-based controller, but are safe, stable, and op-
timal by construction up to numerical errors. It
is also worth noting that warmstarting the numer-
ical solver to optimize jq with the NN prediction
also improves its computational time compared to
warmstarting it with the CLF-CBF QP. )

Example 5.2. (Safe stabilization of unicycle with
drift): Consider the following control system, mod-
eling a unicycle with drift navigating on the plane:
i=wcos(d), §=—y+uvsin@), 0=uw,
with u = (v,w) being the control input. Sup-
pose that our goal is to design a controller that
stabilizes the system to the origin and stays in
the safe set C = {(z,y,0) € R® : h(x,y,0) =
—y + (22 + 1)2 +1 > 0} (this example is taken
from [14, Section VII|. Take the positive defi-
nite function W(x,y) = 0.1(2? + y% + 6%) and
a(s) = s. Now, using the inequalities (2), (3),
we can define by(x,y,0) = (xcos(f) + ysin(6),0)
ar(w,y.0) = —y? +0.1(a? + y? + 6), by(x,y,0) =
(—4(2z 4 1) cos(#) + sin(0),0), az(z,y,0) = —y —
2h(z,y). As shown in [14, Section VII], the in-
equalities a1 (x,y, 0)+bi(z,y,0) Tu < 0, as(x,y,0)+
bo(z,y,0)Tu < 0 are simultaneously feasible in all
of C\{02}, so C\{02} C F. Since the dimension of
the input is 2 and we have 2 constraints, we can use
the same NN as in Example 5.1, even though the
state dimension is different. Figure 2 compares the
trajectories obtained by directly applying the NN-
based controller in closed-loop and using it to warm-
start an optimization scheme to compute u* online.
In this case, both controllers induce safe trajectories
that asymptotically converge to the origin. Table 1,



CLF-CBF QP u* with u” with

NN HardNet controller CLF-CBF QP warmstart | NN warmstart
Tlgf é“lls) 0.053 4 0.01 | 0.2+ 0.08 22+ 15 6.9+ 2.0 47412
Tlgf ém;) 0.0540.01 | 0.2+ 0.04 224 1.6 294 1.9 1.3+0.9

Table 1: Average execution times (+ standard deviation) in milliseconds over the trajectories in Figure 1 (top row) and
Figure 2 (bottom row) for different controller implementations. The first column refers to the controller obtained directly as
the prediction of the NN. The second column refers to the controller obtained as the prediction of the NN when trained with
the HardNet method from [36]. The third column refers to the controller obtained by solving the CLF-CBF QP from [6] (using
the cvxpy library in Python [38]). The fourth (resp. fifth) column refers to the controller obtained by finding the minimum of
the function Jq using a numerical solver (the solve_ivp function in Python’s SciPy library) and warmstarting the solver with

the CLF-CBF QP (resp. the NN prediction).

bottom row reports the execution times of various
controllers for this example as well. °

Figure 2: (left) Projection in the (z,y) plane of trajectories
of the closed-loop system obtained from the neural network
based controller for Example 5.2. (right) Projection in the
(z,y) plane of trajectories of the closed-loop system obtained
from numerically finding the controller u* online and warm-
starting the solver with the NN-based controller for Exam-
ple 5.2. Initial conditions are denoted by red crosses (and
all have an initial orientation 6y = m + 0.1), the origin is
the black dot, and the green region denotes the unsafe set.
Black arrows indicate the orientation of the unicycle (i.e.,
the 0 variable) at that point of the trajectory. Observe that
the velocity v could be negative, so that at points near the
right of the target, the vehicle is "backing up".

6. Conclusions, and Future

‘Work

Limitations,

We have studied the problem of designing a con-
troller that satisfies an arbitrary number of affine
inequalities at every point in the state space, which
arise when enforcing safety, stability, and input con-
straints. We have provided a novel universal for-
mula for controllers satisfying such affine inequali-
ties. The control input is given at every state as the
minimizer of a strictly convex function. To avoid
the computation of such minimizer in real time,
we have introduced a method based on NN to ap-
proximate it. Remarkably, this NN is universal in

the sense that it can be used for any control task
with input dimension and number of constraints
less than some fixed value, and can be trained with
data from just a small subset of the state space.
We have shown the performance of the controller
and its NN approximation in various simulation ex-
amples. A limitation of the presented approach is
that it has not been tested in systems with high-
dimensional states and inputs, or a high number of
constraints. Additionally, the presented controller
is only defined in the region where the constraints
are simultaneously feasible, and is limited to affine
constraints. Future work will focus on addressing
these shortcomings.
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