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Abstract—This paper studies the data-driven control of un-
known linear-threshold network dynamics to stabilize the state
to a reference value. We consider two types of controllers: (i) a
state feedback controller with feed-forward reference input and
(ii) an augmented feedback controller with error integration.
The first controller features a simpler structure and is easier
to design, while the second offers improved performance in the
presence of system parameter changes and disturbances. Our
design strategy employs state-input datasets to construct data-
based representations of the closed-loop dynamics. Since these
representations involve linear threshold functions, we rewrite
them as switched linear systems, and formulate the design prob-
lem as that of finding a common controller for all the resulting
modes. This gives rise to a set of linear matrix inequalities (LMIs)
whose solutions corresponds to the controller gain matrices.
We analyze the computational complexity of solving the LMIs
and propose a simplified, sufficient set of conditions that scales
linearly with the system state. Simulations on two case studies
involving regulation of firing rate dynamics in rodent brains and
of arousal level dynamics in humans demonstrate the effectiveness
of the controller designs.

Index Terms—Linear-threshold networks; data-driven control;
switched systems; linear matrix inequalities.

I. INTRODUCTION

Linear-threshold dynamics are a class of nonlinear dynamics
with wide scientific and practical applications. These dynamics
model interactions within network systems, where the states
of the nodes evolve based on inter-node connectivity and a
linear-threshold activation function. Compared to linear sys-
tems, linear-threshold networks provide bounded system states
and greater dynamical versatility, including mono- and multi-
stability, limit cycles, and chaotic behavior. These properties
have made them useful in diverse fields, including compu-
tational neuroscience [2]–[4], social networks [5], [6], and
deep learning [7], [8]. Traditional approaches to regulate the
dynamical behavior of linear-threshold networks are heavily
model-based and rely on precise model parameters to design
control schemes. Recent advances in data collection, process-
ing, and computation have motivated a spur of activity on data-
driven control methods for systems with unknown dynamics
directly from its input-output data. This paper develops data-
driven control methods for stabilization specifically tailored
for linear-threshold network dynamics.
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Literature review: The existing literature for data-driven
control can be classified into two major categories: linear and
nonlinear systems. For linear systems, Willems’ Lemma [9]
has been a foundational tool in constructing a data-based rep-
resentation of input-output trajectories as a linear combination
of measured data samples. Building on this result, various
types of controllers can be reformulated as part of a closed-
loop representation, thereby facilitating the design of controller
parameters. Along this idea, [10] studies the stabilization
controller and linear–quadratic regulator (LQR) of a system
by associating the gains of linear feedback controllers with the
solutions of a linear matrix inequality (LMI) and a semidefinite
program (SDP), respectively. The idea has also been utilized
in a receding horizon fashion for model predictive control
(MPC) [11], [12] and distributed MPC [13] when data are
only locally available to nodes of a network. Considering data
richness and noise, [12], [14] study the online implementation
of sample efficient data-driven control with noisy system mea-
surements. Aligned with this body of work, the informativity
approach to data-driven control [15] considers measurements
that do not contain enough information to obtain a unique
system. By making assumptions on the model class and noise
model, this approach explicitly determines the set of all sys-
tems consistent with the measurements, thereby enabling the
certification of desirable properties for the measured system.
These have included stability [16], [17], controllability and
observability [18], [19], and dissipativity [20], [21].

These ideas and techniques are currently been extended
to nonlinear systems, see [22], [23] for recent comprehen-
sive surveys on data-driven control of nonlinear systems.
These include [24], [25], utilizing low-rank approximation
technique to handle system nonliterary and treat reminders
as disturbances; [26], studying data-driven optimal control
of bilinear systems; and [27], studying the stabilization of
bilinear systems and uses LMIs to create a guaranteed region
of attraction. By generalizing Willems’ Lemma to particular
types of nonlinear systems, [28] provides nonlinear data-driven
control for Hammerstein-Wiener systems, and [29] for second-
order discrete Volterra systems. Based on dual stability theory
and Farkas’ lemma, [30] develops data-driven control methods
for nonlinear continuous-time systems. Other methods for
nonlinear data-driven control that are not based on Willems’
Lemma include unfalsified control [31], simultaneous per-
turbation stochastic approximation [32], model-free adaptive
control [33], and iterative feedback tuning [34]. Different from
the approaches described above, where the controller can be
directly computed using the data, these approaches tune the pa-
rameters of the controller in an iterative manner and gradually
improve system performance. To address stabilization to states



other than the origin, methods like [35] employ nonlinear basis
functions and combine model-inverse techniques with virtual
reference feedback tuning for reference tracking.

Here, we focus on developing data-driven control tech-
niques for linear-threshold network dynamics. These systems
have diverse applications across several domains. In com-
putational neuroscience, linear-threshold networks have been
used to model mesoscale brain activity [2]. Nodes of the
system represent neuron populations, with states indicating
their average firing rates. Edge weights capture excitatory or
inhibitory interactions among physically adjacent neurons, and
a linear-threshold activation function accounts for firing rate
saturation due to hyperpolarization [36]. In social sciences,
linear-threshold networks have been used to build influence
propagation models [5], [6] to characterize the dynamics of
public opinions. Nodes represent individuals and their opin-
ions, while edges describe interactions influenced by others or
social media (through external inputs to the network). A linear-
threshold is introduced to each node to gauge the condition
when individuals’ opinions change. In deep learning applica-
tions with artificial neural networks, linear-threshold models
are the same as modified rectified linear units (RELU with
max-limits) [8]. RELUs with tunable parameters are generally
used within the hidden nodes in the deep neural networks [37],
which allows good robustness and versatility for function
approximation [38]. Compared with other common activation
functions such as sigmoid and tanh, RELU networks
do not suffer vanishing gradient problems [39], because its
gradient is either a constant or zero. For the same reason,
ReLU networks have low computational complexity [40] when
performing gradient propagation. One feasible approach to
designing controllers for linear-threshold networks is to first
identify the system parameters [41] and then design a model-
based controller [4]. Instead, we pursue here a direct data-
driven approach that bypasses the system identification step
to avoid accumulating approximation errors.

Statement of Contributions: We study the data-driven con-
trol of linear-threshold network dynamics to stabilize the state
of the system to a constant reference value. We do this
by designing two types of controllers: (i) a state feedback
controller with feed-forward reference input and (ii) an aug-
mented feedback controller with error integration. By utilizing
sampled input-output data of the system, we introduce a map
that reconstructs the state-input pair as a transformation of
data matrices. This allows us to obtain a purely data-based
representation to describe the system dynamics, avoiding an
explicit identification of the parametric model. We then use
this result and the specific form of the state feedback con-
troller with feed-forward reference input to obtain a data-
driven representation of the closed-loop system. To design the
feedback and feedforward gain matrices, we view the resulting
system as a switched system and formulate conditions for
the design of a common controller that stabilizes all modes.
The stabilization conditions are characterized by a set of
linear matrix inequalities (LMIs), whose solutions correspond
to the gain matrices. We provide a theoretical guarantee for
the controller’s effectiveness in stabilizing the system state to
the desired constant reference value. For non-zero reference

states, however, we observe that controllers with feed-forward
inputs are often not robust to system parameter changes and
external disturbances. To address this limitation, we design an
augmented feedback controller with error integration adapting
the approach developed for the state feedback controller to the
new design. The process involves deriving a closed-loop data-
based representation and formulating stabilization conditions
in the form of LMIs. In both cases, we observe that the
LMI formulations result in a number of equations that grow
exponentially with the system state’s dimensionality. To ad-
dress this computational challenge, we introduce an alternative
sufficient condition that reduces the complexity of solving
LMIs without sacrificing performance. Finally, we validate the
effectiveness of both algorithms in two case studies: regulating
firing rate dynamics in rodent brains and regulating arousal
level dynamics in humans. The results demonstrate that both
controllers are effective and the controller with error integra-
tion has an improved performance compared with the one with
feed-forward reference input for handling disturbances.

Notation: Let R denote the set of real numbers. Let 1r P Rr

and 1rˆp P Rrˆp denote the vector and matrix with all entries
equal to 1, respectively. Let Ir denote the rˆr identity matrix.
We let col tA1, A2, ¨ ¨ ¨ , Aru “

“

AJ
1 AJ

2 ¨ ¨ ¨ AJ
r

‰J
be

a vertical stack of matrices A1, ¨ ¨ ¨ , Ar possessing the same
number of columns. We let diag tA1, A2, ¨ ¨ ¨ , Aru denote the
diagonal stack of matrices A1, ¨ ¨ ¨ , Ar. We use xris P R to
denote the ith entry of vector x; correspondingly, M ri, js P

R is the entry of matrix M on its ith row and jth column.
We denote by MJ the transpose of M . We let imagepMq

denote the linear span of the columns of matrix M . Specially,
imagepIrq “ Rr. For symmetric matrices M,N , M ą pľqN
means M ´ N is positive (semi-) definite. For s ą 0 and
x P R, the threshold function rxss0 is defined as

rxss0 “

$

’

&

’

%

s for x ą s,

x for 0 ď x ď s,

0 for x ă 0,

For a vector x P Rr, rxss0 denotes the component-wise
application of this definition.

II. PROBLEM FORMULATION

Consider a linear-threshold network of n nodes governed
by the following discrete-time dynamics:

xpt ` 1q “ αxptq ` rWxptq ` Buptqs
s
0 , t P N. (1)

Here x P Rn
ě0 is the network state, which is the compact

stack of a scalar state in each node. W P Rnˆn is the network
connectivity matrix, characterizing the strength of interactions
between different nodes. uptq P Rm is the control input vector,
and B P Rnˆm is the associated input matrix. For each node,
the state of the node evolves according to an intrinsic decay
rate α P p0, 1q, and the linear-threshold activation function
denoted by r¨ss0, whose input is co-generated by the node’s
neighbors and external inputs. Given the decay rate α and
the properties of linear-threshold functions, we assume the
initial state of the dynamics satisfies 0 ď xp0q ď s

1´α , so
that 0 ď xptq ď s

1´α , for all t P N. In (1), we assume the



parameters α and s are known, but the matrices W and B
are unknown. This type of network dynamics arise in the
modeling of the dynamical behavior of the firing rates of
neuronal populations [2], where α denotes the intrinsic decay
rate of neurons’ firing behaviors, W and B characterize the
inhibition/excitation response of neurons from other connected
neurons or external inputs, and the linear-threshold s charac-
terizes the firing rate saturation of neurons due to hyperpo-
larization [36]. In such contexts, the assumption above about
known parameters and unknown matrices are reasonable. The
dynamics also model the opinion propagation of individuals
in social networks [6], where α denotes decaying confidence
[42], W and B characterize the change of individuals’ agree-
ment/disagreement on the matter impacted by other people
or social media, and the linear-threshold characterizes the
saturation threshold of public opinion [43]. More generally,
model (1), with tunable matrices W and B, can be used as
artificial neural networks to approximate nonlinear dynamics
for learning and control tasks [8], [38].

To study dynamics (1), we employ a data-driven approach
and assume that system inputs and states can be sampled from
experiments. Let Td be the total number of available data
points, and let x`

d pkq, xdpkq, and udpkq, k P t1, . . . , Tdu

denote the data samples (corresponding to xpt`1q, xptq, and
uptq, respectively). We employ the index k as an indicator that
distinguishes one data sample from another. It is possible that
all the sampling instances of the data are chosen consecutively
from a system trajectory, where all the data samples are head-
tail connected, i.e., x`

d pkq of the former data can be used as
the xdpkq of the latter one. In general, we allow data samples
to be collected at independent time instances, and even from
various trajectories of the same system.

Problem 1: Consider system (1) with known parameters α
and s, and unknown matrices W and B. Let r P Rn, with
0 ď r ď s

1´α , be a constant reference value the desired state
should converge to. Given data samples xdpkq, x`

d pkq and
udpkq, k P t1, . . . , Tdu, design a feedback controller which
asymptotically stabilizes the system state xptq to the reference
value r.

In the context of the applications mentioned above, the
data-driven control Problem 1 is motivated by the follow-
ing considerations. In neuroscience, for instance, our brain
continuously regulates the firing rate of neuronal cells to
specific patterns, i.e., depending on different brain functions,
the activity of certain neurons should be excited or inhibited. In
social science, the control problem arises when certain actors
seek to steer public opinion in a particular direction. In more
general control applications where a linear-threshold artificial
neural network approximates certain nonlinear dynamics, the
manipulation of the latter can be achieved by controlling the
neural network model.

We assume Problem 1 is solvable. This means that: (i) the
matrices W and B are such that there exist controllers that
stabilize the system (1) to r; (ii) the data samples available
are sufficiently rich to allow us to design the controller without
knowing the matrices W and B. [4, Theorem IV.8] describes
classes of linear-threshold systems for which (i) holds. We
provide below conditions that ensure that (ii) holds. In the

following, we develop a data-driven approach (instead of
model-based) that directly synthesizes a controller to solve
Problem 1.

III. DATA-BASED REPRESENTATION OF LINEAR
THRESHOLD MODELS

In this section, we provide a data-based reformulation
of the system (1). This representation describes the system
update using the available data samples and does not require
knowledge of the unknown matrices W and B.

We start by defining zptq “ xpt ` 1q ´ αxptq and pptq “

col txptq,uptqu. Then, the update (1) can be rewritten as

zptq “ rHpptqs
s
0 , (2)

where

H “
“

W B
‰

“

»

—

—

—

—

–

hJ
1

hJ
2

...

hJ
n

fi

ffi

ffi

ffi

ffi

fl

P Rnˆpn`mq.

Let h “ col th1, h2, . . . , hnu P Rnpn`mq be a vectorized
system parameter encoding the matrices W and B. Then,

Hpptq “

»

—

—

—

—

–

hJ
1 pptq

hJ
2 pptq

...
hJ
npptq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

pptq
J
h1

pptq
J
h2

...
pptq

J
hn

fi

ffi

ffi

ffi

ffi

fl

“
`

In b pptqJ
˘

h.

Thus, equation (2) reads

zptq “
“`

In b pptqJ
˘

h
‰s

0
. (3)

In order to obtain a data-based representation for the sys-
tem, a key step is to represent h with the data samples
tx`

d pkq,xdpkq,udpkqu
Td

k“1. Towards this end, let

Zd “

»

—

—

—

—

–

x`
d p1q ´ αxdp1q

x`
d p2q ´ αxdp2q

...
x`
d pTdq ´ αxdpTdq

fi

ffi

ffi

ffi

ffi

fl

, Pd “

»

—

—

—

—

–

In b pJ
d p1q

In b pJ
d p2q

...
In b pJ

d pTdq

fi

ffi

ffi

ffi

ffi

fl

,

with pdpkq “ col txdpkq,udptqu, Zd P RnTd and Pd P

RnTdˆnpn`mq. According to (3), we have

Zd “ rPdhs
s
0 . (4)

Define fpZdq “ Pdh ´ rPdhs
s
0 P RnTd to represent the part

of Pdh that is truncated by the linear threshold r¨ss0. Clearly,
fpZdqris ‰ 0 only if Zdris “ s or Zdris “ 0. Thus, we
define a diagonal matrix Ed P RnTdˆnTd such that for all
i P t1, . . . , nTdu,

Edri, is “

#

1 if Zdris “ s or Zdris “ 0

0 otherwise.
(5)

Then, there exists a vector v P RnTd such that

fpZdq “ Edv, (6)



which, together with (4), yields Pdh “ Zd ` Edv. Using the
property that pI ´ EdqEd “ Ed ´ Ed “ 0, one has

pI ´ EdqPdh “ pI ´ EdqZd. (7)

This equation describes the vectorized system parameter h in
the form of a data-based equality constraint. We make the
following assumption on the data samples.

Assumption 1: (Data richness): Given data samples
tx`

d pkq,xdpkq,udpkqu
Td

k“1, the matrix pI ´ EdqPd, has full
column rank.

Assumption 1 can be directly verified by computation.
Note that Assumption 1 becomes easier to satisfy as the
number of data samples grows. Based on this assumption,
we can combine equations (3) and (7) to obtain a data-based
representation of the system dynamics, as stated next.

Lemma 3.1: (Data-based representation): Under Assump-
tion 1, let F : Rn`m Ñ RnˆnTd be such that

F ppq ¨ pI ´ EdqPd “ In b pJ, (8)

for any state-input pair p “ col tx,uu. Then the dynamics
(1) has the following data-based representation,

xpt ` 1q “ αxptq ` rF ppptqq ¨ pI ´ EdqZds
s
0 . (9)

Proof: Because pI ´EdqPd has full column rank, by the
Rouché-Capelli Theorem [44], a map F : Rm`n Ñ RnˆnTd

satisfying (8) must exist (but may not be unique). Then, from
equations (3), (7) and (8), it follows that

zptq “
“`

In b pptqJ
˘

h
‰s

0

“ rF ppptqq ¨ pI ´ EdqPdhs
s
0

“ rF ppptqq ¨ pI ´ EdqZds
s
0 .

Equation (9) follows since xpt ` 1q “ αxptq ` zptq.
We refer to (9) as a data-based representation of system (1)

because it does not involve the matrices W and B (or their
vectorized version h), and instead allows, based on the data,
to determine the state at the next timestep based on the current
state and the control input. The representation is valid for an
arbitrary input.

IV. DATA-DRIVEN CONTROL WITH FEED-FORWARD
REFERENCE INPUT

In this section, we introduce a data-driven approach to solve
Problem 1 with a controller of the following form:

uptq “ K1xptq ` K2r, (10)

which is composed of a feed-back gain K1 P Rmˆn over the
system’s current state and a feed-forward gain K2 P Rmˆn

over the reference input. Our strategy consists of first lever-
aging the data-based representation obtained Section III to
describe the closed-loop system. We then view the resulting
linear-threshold system as a switched system and design a
common linear feedback controller that stabilizes all modes.

A. Closed-loop data-based representation

We start with a data-based representation of the closed-loop
system dynamics under the controller (10).

Lemma 4.1: (Closed-loop data-based representation): Let
Assumption 1 hold. The system (1) under the controller (10)
admits the data-based representation,

xpt ` 1q “ αxptq ` rGpxptq, rq ¨ pI ´ EdqZds
s
0 , (11)

where G : Rn ˆ Rn Ñ RnˆnTd satisfies

Gpx, rq ¨ pI ´ EdqPd

“ In b
`

xJ
“

In KJ
1

‰

` rJ
“

0n KJ
2

‰˘

. (12)

Proof: By defining

Gpx, rq “ F

ˆ„

In
K1

ȷ

x `

„

0n

K2

ȷ

r

˙

,

the result follows from Lemma 3.1.
Equation (11) provides a closed-loop data-based description

of system (1). Nevertheless, a closed-form expression for the
map G is not readily available from equation (12). In what
follows, we provide an explicit construction of this map.

Looking at the right-hand side of (12), we observe a block-
diagonal matrix resulting from the Kronecker product. We
make use of such special pattern as follows. Define

Pd “ In b

»

—

—

—

—

–

pJ
d p1q

pJ
d p2q

...
pJ
d pTdq

fi

ffi

ffi

ffi

ffi

fl

P RnTdˆnpn`mq.

Because Pd and Pd share the same rows but in different
orders, there exist a permutation matrix TF P RnTdˆnTd such
that

Pd “ TFPd. (13)

Since Ed is a diagonal matrix, Ed “ TFEdT
´1
F P RnTdˆnTd

is also a diagonal matrix1 which we write as

Ed “ diag tE1, ¨ ¨ ¨ , Enu,

with Ei P RTdˆTd . Now, let
»

—

—

–

z1
...
zn

fi

ffi

ffi

fl

“ TFZd,

with zi P RTd , i P t1, . . . , nu, and define Z “

diag tZ1, ¨ ¨ ¨ , Znu by

Zi “ zJ
i pITd

´ Eiq P R1ˆTd . (14a)

Further define Q “ diag tQ1, ¨ ¨ ¨ , Qnu P RnTdˆnpn`mq by

Qi “
`

ITd
´ Ei

˘

»

—

—

—

—

–

pJ
d p1q

pJ
d p2q

...
pJ
d pTdq

fi

ffi

ffi

ffi

ffi

fl

P RTdˆpn`mq. (14b)

1Let the permutation matrix TF correspond to the permutation tuple
π, which is a reordering of the set t1, 2, ¨ ¨ ¨ , nTdu. By definition of
a permutation matrix, one has T´1

F “ TJ
F , and therefore Edrj, ks “

Edrπrjs, πrkss [45]. Consequently, Edrj, ks “ 0 if j ‰ k.



By definition, we have Q “ pInTd
´ EdqPd.

Lemma 4.2: (Modified closed-loop data-based representa-
tion): Let Assumption 1 hold and consider the data matrices Z
and Q defined in (14). The system (1) under the controller (10)
can be represented by

xpt ` 1q “ αxptq ` rZpMxptq ` Nrqs
s
0 , (15)

where M,N P RnTdˆn satisfy

QJM “ 1n b

„

In
K1

ȷ

, QJN “ 1n b

„

0nˆn

K2

ȷ

. (16)

Proof: We first establish the existence of M , N . Note
that

Q “ pI ´ EdqPd “ pTFT
´1
F ´ TFEdT

´1
F qTFPd

“ TF pI ´ EdqPd.

Since pI ´EdqPd has full column rank, cf. Assumption 1, we
deduce that QJ must have full row rank. From the Rouché-
Capelli Theorem [44], for any K1,K2, there always exist
M,N (which may not be unique) satisfying equation (16).

Next, we show that M,N can be used to construct the
map G satisfying (12). Let M “ col tM1, ¨ ¨ ¨ ,Mnu, N “

col tN1, ¨ ¨ ¨ , Nnu, with Mi, Ni P RTdˆn. From the diagonal
structure of Q, (16) can be equivalently rewritten as

QJ
i Mi “

„

In
K1

ȷ

, QJ
i Ni “

„

0nˆn

K2

ȷ

, (17)

for i P t1, . . . , nu. Let Gipx, rq “ pMix ` NirqJ P RTd ,
i P t1, . . . , nu. Note that

Gipx, rqQi “ xJMJ
i Qi ` rJNJ

i Qi

“ xJ
“

In KJ
1

‰

` rJ
“

0nˆn KJ
2

‰

.

Define Gpx, rq “ diag tG1px, rq, ¨ ¨ ¨ , Gnpx, rqu. One then
has

Gpx, rqpI ´ EdqPd

“ In b
`

xJ
“

In KJ
1

‰

` rJ
“

0nˆn KJ
2

‰˘

. (18)

By letting Gpx, rq “ Gpx, rqTF , it follows that

Gpx, rqpI ´ EdqPd “ Gpx, rqTFT
´1
F pI ´ EdqPd

“ Gpx, rqpI ´ EdqPd.

This, together with (18), implies that G satisfies (12).
Finally, we show that (15) follows from this fact and

equation (11), as follows

rZpMx ` Nrqs
s
0 “

»

—

—

–

zJ
1 pI ´ E1qpM1x ` N1rq

...
zJ
n pI ´ EnqpMnx ` Nnrq

fi

ffi

ffi

fl

s

0

“

»

—

—

–

zJ
1 pI ´ E1qpG1px, rqqJ

...
zJ
n pI ´ EnqpGnpx, rqqJ

fi

ffi

ffi

fl

s

0

“

»

—

—

–

G1px, rqpI ´ E1qz1
...

Gnpx, rqpI ´ Enqzn

fi

ffi

ffi

fl

s

0

“
“

Gpx, rqpI ´ EdqTFZd

‰s

0
“ rGpx, rqpI ´ EdqZds

s
0 ,

which completes the proof.

Comparing the statements in Lemmas 4.1 and 4.2, we see
that finding G : Rn ˆ Rn Ñ RnˆnTd satisfying (12) can
be accomplished by finding the matrices M,N P RnTdˆn

satisfying (16). Regarding the solution of this latter equation,
we note that when K1,K2 are given, M,N can be readily
computed. In fact, equations (17) prescribe exactly how to find
tMi, Niu

n
i“1. However, since our ultimate goal is to design

controller gain matrices K1,K2 themselves, the solution in
M,N and K1,K2 of equation (16) poses the challenge of
jointly solving for n coupled systems of linear equations.
The following result provides a reformulation of the equation
showing that K1,K2 can be expressed as functions of M,N .

Lemma 4.3: (Decoupling constraints for closed-loop data-
based representation): Define matrices L P Rnˆn, C1 P

Rnˆnpn`mq and C2 P Rmˆnpn`mq as

Lri, js “

#

n ´ 1 if i “ j

´1 otherwise,

C1 “
“

In 0nˆnpn`mq´n

‰

,

C2 “
“

0mˆn Im 0mˆpn´1qpn`mq

‰

,

and let L “ L b In`m P Rnpn`mqˆnpn`mq. Then, equa-
tion (16) can be equivalently written as

LQJM “ 0npn`mqˆn, LQJN “ 0npn`mqˆn, (19a)

C1Q
JM “ In, C1Q

JN “ 0nˆn, (19b)

C2Q
JM “ K1, C2Q

JN “ K2. (19c)

Proof: From the definition of L, one has kerpLq “

imagep1nq. Thus, kerpLq “ 1n b imagepIn`mq. From (19a),
for i, j P t1, . . . , nu, it holds

QJ
i Mi “ QJ

j Mj , QJ
i Ni “ QJ

j Nj . (20)

Furthermore, from (19b) and (19c), one has

QJ
1 M1 “

„

In
K1

ȷ

, QJ
1 N1 “

„

0nˆn

K2

ȷ

. (21)

Thus, equations (20) and (21) are equivalent to (17) for i P

t1, . . . , nu, which corresponds to (16). Equation (19c) readily
follows by left multiplying (16) by C2.

The advantage of the constraint formulation (19) over (16)
is that, in the former, K1,K2 can be expressed as functions
of M,N , respectively. In fact, as we vary M,N among all
possible solutions of (19a)-(19b), K1,K2 in (19c) take every
possible value in Rmˆn. This means that we can use (15)
and (19a)-(19b) to design the closed-loop behavior of the
system, with M,N as the only variables. Then, to implement
the desired closed-loop system, one can compute K1,K2 using
(19c) and apply it to the controller (10) of the closed-loop
system. In the equations (15) and (19a)-(19b), note that L,
C1, C2 are constant matrices; and Z and Q are matrices
constructed from the data samples.

B. LMI-based design of feedback gain matrices

Based on the closed-loop data-based representations ob-
tained in Section IV-A, we now introduce a data-driven
approach to design the gain matrices for (10). Note that the
system (1) is nonlinear due to the presence of the threshold



function. Our strategy is to view it as a switched system and
design a common controller that applies to all modes.

We start by defining an error term ϵptq “ xptq ´ r. By
subtracting r on both sides of (15), one has

ϵpt ` 1q “ αϵptq ` rZpMxptq ` Nrqs
s
0 ´ p1 ´ αqr. (22)

To ensure xptq “ r, i.e., ϵptq “ 0, is the equilibrium of
the system, one needs ZpMr ` Nrq “ p1 ´ αqr. Since the
reference signal might be anything satisfying 0 ď r ď s

1´α ,
this necessitates

ZpM ` Nq “ p1 ´ αqIn. (23)

Based on (23), we rewrite (22) as

ϵpt ` 1q “ αϵptq ` rZMϵptq ` p1 ´ αqrs
s
0 ´ p1 ´ αqr

“ αϵptq ` Rpϵptq, rqZMϵptq, (24)

where Rpϵ, rq P Rnˆn is a diagonal matrix with each entry
Rpϵ, rqri, is defined as
$

’

&

’

%

prZMϵ`p1´αqrs
s
0´p1´αqrqris

pZMϵqris if pZMϵ ` p1 ´ αqrqris ą s

or pZMϵ ` p1 ´ αqrqris ă 0,

1 otherwise.

This represents equation (24) as a switched system, where
the matrix Rpϵ, rq depends on the state. This dependency
makes challenging the stability analysis. To address this, we
perform an overapproximation by constructing a convex hull
that encompasses all possible values of Rpϵ, rq.

By definition, one can derive that, for i P t1, . . . , nu,

0 ă Rpϵ, rqri, is ď 1. (25)

Here Rpϵ, rqri, is ‰ 0 because the equality holds only if
prZMϵ ` p1 ´ αqrs

s
0 ´ p1 ´ αqrqris “ 0, which means

pZMϵqris “ 0, contradicting the condition that pZMϵ` p1´

αqrqris ą s or pZMϵ ` p1 ´ αqrqris ă 0.
To continue, define diagonal matrices Rj P Rnˆn, j P

t1, . . . , 2nu, covering all possibilities such that Rjri, is P

t0, 1u (note that this means that one of these matrices is
0nˆn). We let R1 “ In. Since Rpϵ, rq is a diagonal matrix
satisfying (25), regardless of the values of ϵ, r, it can always
be represented as a convex combination:

Rpϵ, rq “

2n
ÿ

j“1

µjRj , with
2n
ÿ

j“1

µj “ 1 and µ1 ą 0. (26)

Here, µ1 ą 0 because R1 “ In and all diagonal entries of
Rpϵ, rq are strictly positive.

Based on equation (26), the following result provides a way
to synthesize the controller.

Theorem 4.4: (Data-driven synthesis via LMIs): Let the
matrices P P Rnˆn and S1, S2 P RnTdˆn satisfy

«

P
`

αP ` ZS1

˘J

αP ` ZS1 P

ff

ą 0, (27a)

«

P
`

αP ` RjZS1

˘J

αP ` RjZS1 P

ff

ľ 0, (27b)

LQJS1 “ 0npn`mqˆn, LQJS2 “ 0npn`mqˆn, (27c)

C1Q
JS1 “ P , C1Q

JS2 “ 0nˆn, (27d)

ZpS1 ` S2q “ p1 ´ αqP , (27e)

for Rj , j P t2, 3, . . . , 2nu. Then, the controller (10), with

K1 “ C2Q
JS1P

´1
, K2 “ C2Q

JS2P
´1

, (28)

ensures that r is asymptotically stable for the closed-loop
system.

Proof: To prove the statement, we construct a quadratic
Lyapunov function of the form V pϵq “ ϵJPϵ, with P ą 0.
The convergence result holds if for any ϵptq ‰ 0, the function
satisfies

V pϵpt ` 1qq ă V pϵptqq.

From (24), this requires

ϵJ
``

αI`Rpϵ, rqZM
˘

JP
`

αI`Rpϵ, rqZM
˘˘

ϵ ă ϵPϵ,
(29)

for all ϵ ‰ 0. To make sure the above equation holds, a
typical and sufficient approach in switched systems [46] is
to guarantee the following matrix inequality holds

`

αI ` Rpϵ, rqZM
˘J

P
`

αI ` Rpϵ, rqZM
˘

´ P ă 0, (30)

for all possible values of Rpϵ, rq. This effectively bypasses
the dependency of Rpϵ, rq on ϵ. Using the Schur comple-
ment [47], (30) is equivalent to

«

P
`

αI ` Rpϵ, rqZM
˘J

αI ` Rpϵ, rqZM P´1

ff

ą 0. (31)

Based on the convex combination in (26), it is sufficient to
consider the following condition

„

P pαI ` ZMq
J

αI ` ZM P´1

ȷ

ą 0, (32a)
„

P pαI ` RjZMq
J

αI ` RjZM P´1

ȷ

ľ 0. (32b)

for a common P ą 0, for all j P t2, 3, . . . , 2nu. Here (32a)
is obtained by letting R1 “ In. Since in (26), µ1 ą 0, the
convex combination of (32) guarantees (31).

Now, let P “ P´1. Since P ą 0, without losing generality,
we introduce two new matrices S1 fi MP and S2 fi NP .

Pre- and post-multiplying equation (32) by
„

P 0
0 I

ȷ

yields

conditions (27a)-(27b), respectively.
To continue, recall that matrices M,N need to satisfy

constraints (19a)-(19b) and (23). Since P ą 0, S1 “ MP
and S2 “ NP , these constraints can be equivalently written
as

LQJMP “ LQJS1 “ 0npn`mqˆn,

LQJNP “ LQJS2 “ 0npn`mqˆn,

C1Q
JMP “ C1Q

JS1 “ P ,

C1Q
JNP “ C1Q

JS2 “ 0nˆn,

ZpM ` NqP “ ZpS1 ` S2q “ p1 ´ αqP ,

which correspond to (27c)-(27e).
Note that Theorem 4.4 only provides a sufficient condition



for stabilizing the system (1) to r. The conservativeness
stems from the facts that we search for a quadratic Lyapunov
function and that, in the derivation from (29) to (32), we ignore
the dependency of Rpϵ, rq on ϵ. This means that, even if (32)
does not hold, (29) may still be true.

Remark 4.5: (Computational complexity of solving LMIs):
LMIs with linear constraints can be efficiently solved using
existing algorithms, cf. [48]. The computational complexity
of solving an equation of the form (27b) is polynomial in Td,
which is the number of data samples and determines the sizes
of matrices Z and Q. However, due to the combinatorial nature
in the definition of the vertices Rj , the number of equations
in (27b) that need to be solved is of order 2n, which grows
exponentially with the dimension of the system. We address
this issue later in Section VI by providing a sufficient condition
with reduced computational complexity. ˝

It is known [49] that feed-forward loops are non-robust to
system disturbances, meaning that slight changes in system
parameters may lead to a large degradation in tracking per-
formance. To address this issue, in the next section, we take
advantage of the classical idea of integral feedback and design
an augmented feedback controller with error integration for
better robustness against disturbance.

V. DATA-DRIVEN CONTROL WITH ERROR INTEGRATION

In this section, we design an augmented feedback controller
with error integration in the following form

uptq “ K1pxptq ´ rq ` K2ξptq (33a)
ξpt ` 1q “ ξptq ` pxptq ´ rq (33b)

to solve Problem 1, where K1 P Rmˆn and K2 P Rmˆn are
controller gains, and ξptq P Rn is an integrator that accu-
mulates the system error. Compared with the linear feedback
controller (10), the integral controller offers better robustness
against state disturbances.

Remark 5.1: (Limitations of the controller with error in-
tegration): The augmented feedback controller with error
integration in the form of (33) is only applicable to a reference
value which excludes the lower and upper bounds of system
states, 0 ă r ă s

1´α . This limitation, which happens to all
integral controls when applied to dynamics with threshold
saturation, is caused by the following reason. The equilib-
rium of dynamics (1) under the controller (33) requires the
convergence of ξptq to a specific value ξ‹, which depends on
the given r and the choice of K2. If any entry of r equals
0 or s

1´α , then, due to the constraints 0 ď xptq ď s
1´α , the

corresponding entry in pxptq´rq is either always non-negative
or always non-positive. Consequently, the monotonic dynamics
of ξptq cannot guarantee convergence to the desired ξ‹. This
issue does not occur when 0 ă r ă s

1´α . It is worth noting
that, in engineering practice, it is rare to require the system
states to reach their exact saturation bounds. ˝

A. Closed-loop data-based representation

Based on the results in Section III, we first derive a
closed-loop data-based representation for system (1) under the
controller (33).

Lemma 5.2: (Closed-loop data-based representation for
augmented feedback controller with error integration): Con-
sider a controller in the form of (33). Given data matrices Z
and Q in (14), let Assumption 1 hold. Then, the system (1)
has the data-based representation,

xpt ` 1q “ αxptq ` rZpMxptq ` Nr ` Uξptqqs
s
0 , (34)

where M,N,U P RnTdˆn satisfy

QJM “ 1n b

„

In
K1

ȷ

, QJU “ 1n b

„

0nˆn

K2

ȷ

, (35a)

QJN “ 1n b

„

0nˆn

´K1

ȷ

. (35b)

Proof: Based on Lemma 3.1, define a new function Γ :
Rn ˆ Rn ˆ Rn Ñ RnˆnTd satisfying:

Γpx, r, ξq “ F

ˆ„

In
K1

ȷ

x `

„

0n

´K1

ȷ

r `

„

0n

K2

ȷ

ξ

˙

.

Then equation (8) yields:

Γpx, r, ξq ¨ pI ´ EdqPd

“Inb
`

xJ
“

In KJ
1

‰

`rJ
“

0nˆn ´KJ
1

‰

`ξJ
“

0nˆn KJ
2

‰˘

,
(36)

and the closed-loop data-based representation (9) can be
written as

xpt ` 1q “ αxptq ` rΓpxptq, r, ξq ¨ pI ´ EdqZds
s
0 . (37)

Based on (36)-(37), and similarly to the proof of Lemma 4.2,
one can associate matrices M , N , U with terms x, r, ξ,
respectively, and obtain equations (34)-(35) as counterparts of
equations (15)-(16). We omit the details for brevity.

In equation (35), the coupled constraints introduced by
the Kronecker product can be equivalently reformulated as
follows.

Lemma 5.3: (Decoupling constraints for closed-loop data-
based representation): Given L P Rnˆn, C1 P Rnˆnpn`mq

and C2 P Rmˆnpn`mq as in Lemma 4.3, the constraint (35a)
can be equivalently written as

LQJM “ 0npn`mqˆn, LQJU “ 0npn`mqˆn (38a)

C1Q
JM “ In, C1Q

JU “ 0nˆn (38b)

C2Q
JM “ K1, C2Q

JU “ K2 (38c)

Proof: Given the shared structure of (35a) and (16),
the derivation of the equations (38) follows directly from
Lemma 4.3.

Note that Lemma 5.3 only characterizes the constraint (35a)
and ignores (35b). This is because QJ has full row rank.
Then, based on the Rouché-Capelli Theorem [44], for any
K1 in (35b), there always exists N such that the equation
holds. Furthermore, since K1 can be determined from M , the
constraints (35) can be simplified to only considering (35a).
The control matrices K1 and K2 for (33) can therefore be
designed by determining matrices M,U satisfying (38).

B. LMI-based design of integral feedback gain matrices
We follow an approach similar to that of Section IV-B to

propose a data-driven approach to design the feedback gain



matrices in (33) for solving Problem 1. We start by letting
ϵptq “ xptq ´ r. Based on (33) and (34), one has

ϵpt ` 1q “ αϵptq ` rZpMxptq ` Nr ` Uξptqqs
s
0 ´ p1 ´ αqr,

ξpt ` 1q “ ξptq ` ϵptq.

For now, we make the assumption that ZU is non-singular
(we show later in Proposition 5.5 that this property actually
holds). Based on this assumption, for any r, there must exist
ξ‹ such that

ZppM ` Nqr ` Uξ‹q “ p1 ´ αqr. (39)

Using this ξ‹, let eptq “ ξptq ´ ξ‹. Then we have

ϵpt ` 1q “ αϵptq ` rZMϵptq ` ZUeptq ` p1 ´ αqrs
s
0

´ p1 ´ αqr

“ αϵptq ` Rpϵ,e, rqpZMϵptq ` ZUeptqq,

ept ` 1q “ eptq ` ϵptq, (40)

where Rpϵ,e, rq P Rnˆn is a diagonal matrix with each entry
Rpϵ,e, rqri, is defined as
$

’

’

’

&

’

’

’

%

prZMϵ`ZUe`p1´αqrss0´p1´αqrqris

pZMϵ`ZUeqris

if pZMϵ ` ZUe ` p1 ´ αqrqris ą s

or pZMϵ ` ZUe ` p1 ´ αqrqris ă 0

1 otherwise

Note that Rpϵ,e, rqri, is is always well defined for any ϵ, e,
and 0 ă r ă s

1´α , because the first two conditions hold only
if pZMϵ`ZUeqris ‰ 0. It is also worth noting that, in (40),
the matrix N does not appear. This aligns with the fact that
the equations (38) do not involve N , and allow us to design
K1,K2 by only considering M,U .

To continue, similar to the analysis in Section IV-B, we have
0 ă Rpϵ,e, rqri, is ď 1, for all i P t1, . . . , nu. We employ the
same matrices Rj P Rnˆn, j P t1, . . . , 2nu, to create a convex
combination:

Rpϵ,e, rq “

2n
ÿ

j“1

µjRj , with
2n
ÿ

j“1

µj “ 1 and µ1 ą 0.

(41)

The following result provides a way to synthesize the con-
troller leveraging (41).

Theorem 5.4: (Data-driven synthesis for augmented feed-
back controller with error integration via LMIs): Given P P

R2nˆ2n, consider the block decomposition

P “

«

P 11 P 12

P
J

12 P 22

ff

with P 11, P 12, P 22 P Rnˆn. Let the matrices P and S1, S2 P

RnTdˆn satisfy
»

—

–

P ˚
˜

αP 11`ZS1 αP 12`ZS2

P 11`P
J

12 P 12`P 22

¸

P

fi

ffi

fl

ą 0,

(42a)

»

—

–

P ˚
˜

αP 11`RjZS1 αP 12`RjZS2

P 11`P
J

12 P 12`P 22

¸

P

fi

ffi

fl

ľ 0,

(42b)

LQJS1 “ 0npn`mqˆn, LQJS2 “ 0npn`mqˆn (42c)

C1Q
JS1 “ P 11, C1Q

JS2 “ P 12, (42d)

for Rj , j P t2, 3, . . . , 2nu, where ˚ represents the symmetric
part of the matrix. Then the controller (33), with

“

K1 K2

‰

“ C2Q
J

“

S1 S2

‰

P
´1

, (43)

ensures that pr, ξ‹q is asymptotically stable for the closed-loop
system.

Proof: To prove the statement, we construct a quadratic
function of the form

V pϵ, eq “

„

ϵ
e

ȷJ

P

„

ϵ
e

ȷ

(44)

with P ą 0. The convergence result holds if, for any
col tϵptq, eptqu ‰ 0, the function satisfies

V pϵpt ` 1q,ept ` 1qq ă V pϵptq,eptqq.

From (40), this requires
„

ϵ
e

ȷJ

Φpϵ, e, rqJPΦpϵ, e, rq

„

ϵ
e

ȷ

ă

„

ϵ
e

ȷJ

P

„

ϵ
e

ȷ

(45)

when either ϵ ‰ 0 or e ‰ 0, where

Φpϵ, e, rq “

„

αI ` Rpϵ,e, rqZM Rpϵ,e, rqZU
I I

ȷ

. (46)

To make sure (45) holds for the switched system, it is sufficient
to guarantee the following matrix inequality holds

Φpϵ, e, rqJPΦpϵ, e, rq ă P (47)

for all possible values of Rpϵ,e, rq. Using the Schur comple-
ment [47], (47) is equivalent to

»

–

P ˚
ˆ

αI ` Rpϵ,e, rqZM Rpϵ,e, rqZU
I I

˙

P´1

fi

fl ą 0.

(48)

Leveraging (41), it is sufficient to consider instead
»

–

P ˚
ˆ

αI ` ZM ZU
I I

˙

P´1

fi

fl ą 0, (49a)

»

–

P ˚
ˆ

αI ` RjZM RjZU
I I

˙

P´1

fi

fl ľ 0. (49b)

for a common P ą 0, for all j P t2, 3, . . . , 2nu. Here (49a)
is obtained by letting R1 “ In. Since in (41), µ1 ą 0, the
convex combination of (49) guarantees (48).

Now, let

P “

«

P 11 P 12

P
J

12 P 22

ff

“ P´1.

Since P ą 0, without losing generality, we introduce



a pair of matrices
“

S1 S2

‰

fi
“

M U
‰

P “
”

MP 11 ` UP
J

12 MP 12 ` UP 22

ı

. Pre- and post-

multiplying (49) by
„

P 0
0 I

ȷ

yields (42a)-(42b), respectively.

To continue, recall that matrices M,U need to satisfy
constraints (38a) and (38b). Since P ą 0, and

“

S1 S2

‰

“
“

M U
‰

P , these constraints can be equivalently written as

LQJ
“

M U
‰

P “ LQJ
“

S1 S2

‰

“ 0npn`mqˆ2n

C1Q
J

“

M U
‰

P “ C1Q
J

“

S1 S2

‰

“
“

P 11 P 12

‰

which correspond to (42c-d).
Theorem 5.4 relies on the fact that ZU is a non-singular

matrix, so that ξ‹ is well defined. We show that this holds
next.

Proposition 5.5: (Non-singular matrix): The matrix ZU ,
with U obtained from Theorem 5.4, is non-singular.

Proof: We reason by contradiction. Assume ZU is singu-
lar. Note that (49a) corresponds to (47) when Rpϵ,e, rq “ In.
Considering the block structure of Φpϵ, e, rq in (46), since
ZU is singular, then at least one eigenvalue of Φpϵ, e, rq is
1. This contradicts (47), which requires all all eigenvalues of
Φpϵ, e, rq to have magnitude strictly less than 1.

Remark 5.6: (Computational complexity of solving LMIs,
cont’d): The LMIs in (42) have twice the dimensions com-
pared with those in (27). Apart from this, similar to the
complexity of solving (27b), the computational complexity
of solving a single (42b) is polynomial in Td. However, the
number of equations in (42b) that we need to solve is of
order 2n, which grows exponentially with the dimension of the
system. This observation motivates Section VI, which provides
a sufficient condition to reduce the computational complexity
for both Theorems 4.4 and 5.4. ˝

VI. SUFFICIENT STABILITY CONDITIONS WITH REDUCED
COMPUTATIONAL COMPLEXITY

The high computational cost of Theorems 4.4 and 5.4 arises
from the use of matrices Rj in (26) and (41) to construct
convex combinations representing Rpϵ, rq and Rpϵ,e, rq, re-
spectively. To reduce this complexity, we propose using a
smaller set of matrices whose convex combination can still
represent Rpϵ, rq and Rpϵ,e, rq.

Towards this end, define rR0 “ 0nˆn. For k P t1, . . . , nu,
let rRk P Rnˆn be a diagonal matrix such that

rRkrj, js fi

#

1 for j “ k,

0 for j ‰ k.

The next result provides an alternative set of LMIs whose
number scales linearly with n, that can be used to replace
conditions (27b) and (42b), respectively.

Proposition 6.1: (A sufficient condition with reduced com-
putational complexity for solving LMIs):

(i) Let P P Rnˆn and S1, S2 P RnTdˆn satisfy
„

P ˚

αP ` n rRkZS1 P

ȷ

ľ 0 (50)

for all rRk, k P t0, 1, . . . , nu. Then, these matrices
satisfy (27b) for all i P t2, 3, . . . , 2nu;

(ii) Let

P “

«

P 11 P 12

P
J

12 P 22

ff

P R2nˆ2n

with P 11, P 12, P 22 P Rnˆn and S1, S2 P RnTdˆn satisfy
»

—

–

P ˚
˜

αP 11`n rRkZS1 αP 12`n rRkZS2

P 11`P
J

12 P 12`P 22

¸

P

fi

ffi

fl

ľ 0

(51)

for all rRk, k P t0, 1, . . . , nu. Then these matrices sat-
isfy (42b) for all i P t2, 3, . . . , 2nu.
Proof: For brevity, we only provide the proof for case

(ii). The proof for (i) is analogous. Given j P t1, . . . , 2nu, let
ajk “ Rjrk, ks, k P t1, . . . , nu. It follows that

Rj “

n
ÿ

k“1

ajk rRk and
n

ÿ

k“1

ajk ď n,

where the inequality holds because ajk “ Rjrk, ks P t0, 1u.
For convenience, let σj “

řn
k“1 ajk.

For k P t1, . . . , nu, we multiply (51) by ajk

n and sum the
inequalities over all k to yield
»

—

–

σj

n P ˚
˜

α
σj

n P 11`RjZS1 α
σj

n P 12`RjZS2
σj

n pP 11`P
J

12q
σj

n pP 12`P 22q

¸

σj

n P

fi

ffi

fl

ľ 0.

(52)

Consider (51) for rRk“0 “ 0nˆn. Since σj ď n, we have

´

1 ´
σj

n

¯

»

—

–

P ˚
˜

αP 11 αP 12

P 11`P
J

12 P 12`P 22

¸

P

fi

ffi

fl

ľ 0. (53)

Thus, for j P t2, 3, ..., 2nu, adding (52) and (53) results in
(42b).

The conditions in Proposition 6.1 are more computationally
tractable: we have only order n LMIs to consider, instead of
order 2n from (27b) or (42b). However, these conditions are
stricter due to the rescaling factor on the off-diagonal elements
of the matrix. As a consequence, there might exist matrices sat-
isfying (27b) or (42b), but not the corresponding (50) or (51).
Finally, note that when solving the LMIs, conditions (27a) and
(42a) still need to be considered because they impose positive
definite conditions, whereas from the proof of Proposition 6.1
we can only guarantee positive semi-definiteness for j “ 1.

VII. CASE STUDIES: VALIDATING DATA-DRIVEN
CONTROL IN BIOLOGICAL SYSTEMS

In this section, we present two biological examples [50],
[51] to validate the effectiveness of the proposed data-driven
control. The first example tackles the regulation of neuro-
excitation levels in rodents’ brains during selective listening
tasks. This example assumes that the excitation levels of
specific neuronal populations can be directly manipulated as
system inputs The second example simulates the regulation
of human arousal levels using a brain–computer interface



(BCI) for a sensory-motor task. This example builds on a
more realistic application with the potential for real-world
implementation.

A. Data-driven Regulation of Neuro-Excitation Levels in Ro-
dents’ Brain

We consider an experiment that studies the regulation of
neural activation levels in rodents’ brains for selective listening
tasks [50], [52], [53]. The rodents are exposed to a (left/right)
white noise burst and a (high/low pitch) narrow-band warble.
Depending on the task, they need to focus on one of them and
ignore the other. During the experiments, the firing rates of the
neuron cells are recorded from two different regions of their
brains: the prefrontal cortex (PFC) and the primary auditory
cortex (A1).

PFC A1

System States

Stimuli

Task relevant
nodes

Task irrelevant
nodes

Inhibitory Nodes

Excitatory Nodes

External stimuli

Control Inputs

Fig. 1. The model includes 8 groups of neuron cells and one external
stimulus. The nodes in the gray box are considered as system states; the
nodes in green boxes are considered as control inputs.

We classify the neurons in the rodent brains into 8 “ 23

groups based on a combination of: region (PFC, A1); type (ex-
citatory, inhibitory); and encoding (task relevant, irrelevant), as
shown in Fig. 1. We choose 4 nodes as system states (n “ 4),
corresponding to the excitatory nodes in the PFC area and the
inhibitory nodes in the A1 area. The other 4 nodes along with
the external stimuli are considered as system inputs. Building
on this configuration, we have identified the following system
parameters in our previous work [41]:

α “ 0.9728, s “ 0.3984,

W “

»

—

—

–

0 0.0427 ´0.0122 0
0.0084 0 ´0.0003 ´0.0009
0.0421 0.0334 0 0
0.1031 0.0114 ´0.0036 0

fi

ffi

ffi

fl

,

B “

»

—

—

–

0.0114 ´0.0005 ´0.0749 ´0.0017 0
´0.0270 0.0015 0.2107 0 0
´0.6332 0.0044 ´0.2840 0 0.0358
´0.7236 0.0162 0.5482 0 0.0207

fi

ffi

ffi

fl

.

The upper bound of the system state is s
1´α “ 14.647. Note

that the system matrices are assumed to be unknown during the
data-driven controller design – we only use them to generate
data samples. Based on W , B, α and s, we create data samples
with the following discrete-time system model

rx`
d pkq “ αprxdpkqq ` rW prxdpkqq ` Bprudpkqqs

s
0

with k P t1, . . . , Tdu and Td “ 250. For different k, system
states rxdpkq and inputs rudpkq are chosen independently, i.e.,
the entries of rxdpkq are randomly chosen from r0 14.647s;
the entries of rudpkq are randomly chosen from r0 10s, with
uniform distributions. By validation, the data samples satisfy
the rank condition in Assumption 1.

To validate Theorem 4.4, we consider the following semi-
definite programming (SDP) problem with a random reference
input r “

“

8.26 4.42 10.99 6.95
‰J

,

maximize γ (54a)

subject to P ĺ In, (54b)
„

P ˚

αP ` ZS1 P

ȷ

ľ γI2n, (54c)
„

P ˚

αP ` n rRkZS1 P

ȷ

ľ 0, (54d)

LQJS1 “ 0, LQJS2 “ 0, (54e)

C1Q
JS1 “ P , C1Q

JS2 “ 0, (54f)

ZpS1 ` S2q “ p1 ´ αqP , (54g)

for all rRk, k P t1, . . . , nu. With the solution, we define K1 “

C2Q
JS1P

´1
and K2 “ C2Q

JS2P
´1

to design a controller

uptq “ K1xptq ` K2r.

With γ positive, conditions (54c-g) correspond to Theorem 4.4
and Proposition 6.1(i) (for the sake of reducing computation
complexity). Building on this, we add (54a-b) to formulate an
SDP problem. The motivation for these two terms is as fol-
lows. From the inequality (30), once P is given, the decrease
of the Lyapunov function depends on the eigenvalues of the
negative matrix in (30). Furthermore, since 0 ă r ă s

1´α ,
based on the definition of Rpϵ, rq under (24), when ϵ is
sufficiently small, we have Rpϵ, rq “ In. Substituting this into
(30) and applying the Schur complement, the decrease of the
Lyapunov function is reflected by the magnitude of positive
γ in (54c). This motivities the maximization of γ in (54a).
Furthermore, since in (54c), γ can grow linearly (to infinity)
with P , we need to normalize the magnitude of P , leading to
the condition (54b). We validate that problem (54) is solvable,
and compute the controller gains K1, K2. Given a random
initial state xp0q, we show in Figure 2 the system trajectory
of the closed-loop system. One can observe that all the system
states are stabilized at the reference input.

To also validate Theorem 5.4, we consider the following
SDP problem

maximize γ (55a)

subject to P ĺ In (55b)
»

—

–

P ˚
˜

αIn`ZS1 αP 12`ZS2

P 11`P
J

12 P 12`P 22

¸

P

fi

ffi

fl

ľ γI4n

(55c)



Fig. 2. Data-driven stabilization of a 4-node network. The synthesis of the
feedback gain matrix is based on solving the SDP specified in (54).

»

—

–

P ˚
˜

αP 11` rRkZS1 αP 12` rRkZS2

P 11`P
J

12 P 12`P 22

¸

P

fi

ffi

fl

ľ 0

(55d)

LQJS1 “ 0, LQJS2 “ 0 (55e)

C1Q
JS1 “ P 11, C1Q

JS2 “ P 12 (55f)

for all rRk, k P t1, ..., nu.
This allows us to design a controller with integral feedback

by defining
“

K1 K2

‰

“ C2Q
J

“

S1 S2

‰

P
´1

and setting

uptq “ K1pxptq ´ rq ` K2ξptq

ξpt ` 1q “ ξptq ` pxptq ´ rq.

The motivation for this SDP is the same as (54). We validate
that this problem is also solvable, and compute the controller
gains K1, K2. Given a random initial state xp0q and a random
reference value r “

“

8.26 4.42 10.99 6.95
‰J

, we show
in Figure 3 the trajectory of the closed-loop system with
integral feedback control. One can observe that all the states
are stabilized at the reference value.

Compared with Figure 2, this result shows a faster response
time in general. Furthermore, we observe larger overshoots
and non-smoothness on these trajectories. This is caused by
the joint effect of the integral term and the linear-threshold
function, i.e., when the linear-thresholds are activated, the
changing rates of the trajectories are bounded and the integral
quickly accumulates; when the linear-thresholds changes from
active to deactive, a sharp, non-smooth transition happens to
the trajectory.

Effect of system disturbances: We verify the robustness of
the two controllers (10) and (33) under random disturbances.
Consider the application of disturbance ωptq P R4ˆ1 to
system (1) to yield

xpt ` 1q “ αxptq ` rWxptq ` Buptq ` ωptqs
s
0 . (56)

We assume ωptq is i.i.d. and at each time step, its entries are
randomly chosen from r0 0.2s following a uniform distribu-

Fig. 3. Data-driven stabilization of a 4-node network. The synthesis of the
feedback gain matrix is based on solving the SDP specified in (55).

tion. Using the data corrupted by noise, we design controllers
based on SDPs (54) and (55) to obtain controllers that can
stabilize the system states to the desired value r. Figure 4
shows that the controller (10) is not able to stabilize the system
states to the desired values. This is because the controller
uses a feed-forward mechanism to handle the reference value,
which is not able to compensate the system disturbances.

Fig. 4. Data-driven stabilization of the system with controller (10) in the
presence of system disturbances. Dashed lines correspond to the values of r.

In contrast, Figure 5 shows that the augmented feedback
controller (55) with error integration is able to stabilize the
system states to the desired values and rejects the tracking
error caused by the system disturbances.

B. Data-driven Regulation of Arousal in Sensory-Motor Task
We validate the proposed data-driven control approach by

stimulating a similar arousal regulation experiment studied
in [51]. Arousal refers to the state of being physiologically
alert, awake, and attentive, which significantly affects a hu-
man’s ability to make decisions and take actions in dynamic



Fig. 5. Data-driven stabilization of the system with controller (55) in the
presence of system disturbance. Dashed lines correspond to the values of r.

environments. According to the Yerkes–Dodson Law [54],
there is an optimal mid-range level of arousal for peak
performance. Deviations from this optimal level can hinder
effectiveness, as shown in Figure 6 (right).

EEG 
Dynamics

Arousal 
Level

Heart-beat 
Audio feedback Arousal level 

Desired Range 

of Arousal

Tense up Relax

Environment:
boundary-avoidance task T

as
k
 P

er
fo

rm
an

ce

Fig. 6. Left: Regulation of arousal using audio feedback in sensory-motor
tasks. Right: The relation between arousal level and task performance.

The experiment performed in [51] considers a boundary-
avoidance task (BAT) paradigm, which demands the sensory-
motor responsiveness of humans. The experiment uses a virtual
reality (VR) environment, where participants navigate a plane
through courses of rectangular red waypoints (‘rings’) and
the game fails if the plane misses a ring. A neurofeedback
mechanism, cf. Figure 6, is employed to regulate humans’
arousal levels. Using EEG signal features (specifically, spectral
information), the system decodes a participant’s arousal level
and generates auditory feedback in the form of a heartbeat
sound. The volume of the sound increases linearly with
the decoded arousal level, which ‘warns’ participants when
their arousal level becomes excessively high. This feedback
helps participants ‘relax’ and maintain their arousal within an
optimal range to improve task performance. The experiment
demonstrated the effectiveness of this feedback mechanism
in regulating arousal levels. It is worth mentioning that in
[51], both the arousal decoder and the auditory feedback
coefficient derived from arousal levels are qualitative, since
true arousal is difficult to quantify and accurately modeling
human behavior for optimal control parameters is challenging.
Consequently, the parameter choices employed there are based

on experience and experimental results. In contrast, the method
proposed in this paper is data-driven, which can circumvent
these limitations by enabling a systematic and quantitative
design of the controller.

To simulate human EEG dynamics, we construct a linear
threshold model in which the system state represents the
spectral properties of the human’s EEG signal. The spectral
properties of EEG signals can be approximated using linear-
threshold networks, as justified by several works [55], [56].
We choose the dimension of the state as x P R15, which can
be justified as follows: we consider 5 frequency-bands (delta,
theta, alpha, beta, and gamma: r0.5, 4s, r4, 8s, r8, 15s, r15, 24s,
and r24, 50s Hz, respectively) of the EEG signal and, for each
band, we select three dominant frequencies and normalize
them, resulting in a 15-dimensional representation. This ap-
proach is similar to the surrogate subspace introduced in [51].
The system input u P R represents the volume of the auditory
feedback. To map the EEG states to the arousal level arou, we
introduce a linear mapping

arou “ ϕJx P r0%, 100%s.

The model parameters are chosen as follows: the decay rate
α “ 0.7 drives the EEG activities to resting states; we
set s “ 0.3, so that the normalized states x are bounded
within s

1´α “ 1. The state update matrix W characterizes the
interdependence of EEG channels and how they change due
to factors such as the difficulty of the BAT game; the input
matrix B represents how humans’ EEG states are impacted
by auditory feedback. Since W and B can vary significantly
among different subjects and are difficult to model explicitly,
in this simulation, they are randomly generated with each entry
chosen uniformly from r´0.5, 0.5s. However, to make sure
these matrix are meaningful for the experiment, we ensure
that an increase in u (auditory feedback volume) leads to a
decrease in arou. This aligns with the experiment setup in [51],
where subjects are instructed to relax in response to louder
audio feedback. During the experiment, the mapping ϕJ that
translates EEG states into arousal levels is unknown, so the
arousal level cannot be directly decoded, which is different
from [51]. Instead, we demonstrate the data-driven method
proposed here, that uses EEG state feedback to regulate the
arousal level.

Our control objective is to drive the subject’s EEG states
to a target frequency pattern rT . Such rT is subject-specific,
associated with the desired arousal level of the human, and can
be determined during the testing trials. In addition, since the
EEG states are subject to additive noise, we use the controller
with error integration. We formulate the SDP problem (55)
and solve for the controller gains K1 and K2, which maps the
EEG spectral properties x to a scaler volume of the auditory
feedback input u. Figure 7 (left) demonstrates the effectiveness
of the obtained data-driven controller in regulating the arousal
into a desired range from an overly tensed-up state and
maintaining it in this region. The overshoot of the trajectory
is caused by the integral term.

Furthermore, Figure 7 (right), demonstrates the relationship
between the arousal level and the audio feedback volume. This
is done by taking random EEG states x and observing the
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Fig. 7. Left: regulation of arousal using the proposed data-driven controller.
Right: relationship between arousal level and audio feedback volume based
on the state feedback matrix K1.

relations between arou “ ϕJx and u “ K1x. Here, since the
integrator ξ is dynamically changing, except at equilibrium,
its impact on the control input u is difficult to characterize.
Therefore, we set ξ “ 0 and ignore the K2ξ term in u.
The linear regression of the relation between arou and u
(considering only the proportional term K1) suggests that the
volume should increase with the arousal level of the human,
i.e., a higher volume reminds the human that their arousal
level is high, and the human will try to calm down to reduce
their arousal level. Our result hence aligns with the experiment
design in [51] and provides a justification for this feedback
mechanism.

VIII. CONCLUSIONS AND FUTURE WORK

We have designed data-driven controllers to stabilize un-
known linear-threshold network models to a given reference
value. Exploiting the special structure of the linear-threshold
model, we have established a data-based representation of the
dynamics relying on a map that reconstructs the system’s state-
input datasets. Building on this, we have obtained closed-
loop data-based representations for two types of data-driven
controllers: state feedback with feed-forward reference input
and augmented feedback controller with error integration. In
both cases, we have shown how to combine these representa-
tions with techniques from switched systems theory to identify
stabilization conditions in the form of a set of linear matrix in-
equalities (LMIs), whose solutions correspond to the controller
gain matrices. We have formally established the correctness
of the proposed designs. Given that the complexity of the
LMI formulations grows exponentially with the system state,
we have proposed alternative sufficient conditions to solve
the LMIs that scale linearly without sacrificing performance.
We have validated the effectiveness of the two controllers
in two different case studies. Future work will investigate
controller designs beyond time-invariant ones, extend our
results to scenarios where access to full-state information is
not available, and explore the applicability of the results to
other case studies.
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