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Abstract— We propose a control barrier function (CBF)
formulation for enforcing equality and inequality con-
straints in variational inference. The key idea is to define
a barrier functional on the space of probability density
functions that encode the desired constraints imposed on
the variational density. By leveraging the Liouville equation,
we establish a connection between the time derivative of
the variational density and the particle drift, which enables
the systematic construction of corresponding CBFs asso-
ciated to the particle drift. Enforcing these CBFs gives rise
to the safe particle flow and ensures that the variational
density satisfies the original constraints imposed by the
barrier functional. This formulation provides a principled
and computationally tractable solution to constrained vari-
ational inference, with theoretical guarantees of constraint
satisfaction. The effectiveness of the method is demon-
strated through numerical simulations.

Index Terms— Estimation, Variational methods, Safety-
critical control

I. INTRODUCTION

BAYESIAN inference plays a key role in a variety of
applications, including statistical learning [1], estimation

theory [2], and motion planning [3]. In Bayesian inference
problems, we start with a prior probability density function
(PDF) p(x), and given an observation z and associated likeli-
hood PDF p(z|x), we aim to compute a posterior PDF p(x|z),
following Bayes’ rule. Traditional approaches to Bayesian
inference include the Kalman filter [4], which relies on linear
Gaussian assumptions, and its extension to nonlinear observa-
tion and transition models, the extended Kalman filter (EKF)
[5]. As an alternative, particle filters [6] and sequential Monte
Carlo methods [7] approximate the posterior using weighted
particles instead of a parametric density.

Variational inference (VI) [8] is a formulation of Bayesian
inference as an optimization problem with Kullback–Leibler
(KL) divergence between a variational density q(x) and the
posterior density p(x|z) as the objective. Many effective
methods [9] exist for VI. A particularly effective approach is
particle-based VI [10]–[12], where the variational density is
approximated by a finite set of particles that evolve according
to a particle drift function. Examples of such methods include
the Stein variational gradient descent [10], the particle flow
particle filter [11], and diffusion-based VI [12].

In this paper, we consider a constrained VI problem where
the posterior density must satisfy certain conditions, e.g.,
manifold constraints on orientation in robot state estimation
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[13]. Constrained VI can be approached by requiring particle
samples from the variational density to satisfy the constraints.
Methods using this approach typically modify the particle
drift to ensure constraint satisfaction [14]–[16]. For instance,
equality constraints have been addressed using projection
methods [15] and Lagrange multiplier formulations [14]. The
projection method [15] is extended in [16] to handle multiple
equality and inequality constraints. However, the inclusion of
inequality constraints relies on slack variables, which leads
to poor constraint satisfaction in practice. Instead of altering
an established particle drift, one can also derive particle drift
using a penalized objective that encodes the prescribed con-
straints [17], [18]. The penalized objective can be constructed
either by augmenting the KL divergence with an additional
penalty term [17] or by modifying the posterior density [17],
[18]. A hybrid approach has been proposed in [19], where a
particle drift is derived from a modified posterior that encodes
inequality constraints, and subsequently adjusted to enforce
equality constraints through a projection method similar to
[15]. Nonetheless, penalization methods lack guarantees on
exact constraint satisfaction. Moreover, all aforementioned
methods enforce constraints only on individual particles and
do not formally establish whether particle-wise constraint
satisfaction guarantees variational-density-wise constraint sat-
isfaction. To address this limitation, Chamon et al. [20] for-
mulate a primal-dual approach, where the variational density
and the dual variables associated with the constraints are
updated simultaneously following the steepest descent/ascent
direction of the Lagrangian under the Wasserstein metric.
This method provides theoretical guarantees on the variational
density asymptotically satisfying chance constraints on the
expectations of the constraint functions, which is different
from the deterministic constraints on the density function
support studied here.

Our objective is to preserve the simplicity of modifying a
desired particle drift while providing guarantees on constraint
satisfaction for the variational density. This motivates using
control barrier functions (CBFs), which provide a rigorous
approach to enforce constraints on the evolution of a control
system [21], [22]. The safe particle flow introduced here
can be interpreted as a minimally modified instance of the
gradient flow of the KL divergence in the space of PDFs.
Recent developments in the CBF literature introduce the safe
gradient flow [22], demonstrating the effectiveness of CBFs
for enforcing constraints along the gradient flow dynamics
in nonlinear optimization. CBF techniques have gained pop-
ularity in the control community due to their simplicity and
formal guarantees for constraint satisfaction. For control-affine
systems, CBF conditions take the form of linear constraints in
the control input, enabling safe control synthesis via quadratic



programming. A comprehensive overview of CBF techniques
and their application as safety constraints in quadratic pro-
grams is provided in [21]. These methods have been extended
to functional spaces, illustrating the use of control barrier
functionals for time-delayed system safety [23]. Despite their
success in enforcing constraints within control systems, CBF
techniques have not been used to enforce constraints in VI.

We propose a methodology that leverages CBF techniques
to incorporate inequality constraints in VI in three key steps:
(1) a barrier functional encodes the desired constraints on the
variational density, yielding conditions on its time derivative.
These are challenging to work with directly due to the infinite-
dimensional nature of the density space; (2) the Liouville
equation [24] relates the time derivative of the variational
density to the deterministic particle drift, allowing us to in-
stead formulate corresponding CBF constraints on the particle
drift; (3) satisfying the CBF constraints on the deterministic
particle drift guarantees that the variational density flow also
satisfies the barrier constraints. The deterministic particle drift
is essential for the validity of CBF techniques. The CBF-based
flow formulation offers an anytime algorithm that ensures
constraint satisfaction at any time during the particle evolution,
unlike Lagrange multiplier–based methods that only guarantee
asymptotic constraint satisfaction. Our method provides a prin-
cipled and computationally tractable way of ensuring density-
wise constraint satisfaction, thereby establishing a rigorous
connection between safe particle flow and constrained VI.

II. PROBLEM STATEMENT

Consider a Bayesian inference problem where x ∈ X ⊂ Rn

is a random variable of interest with prior PDF p(x). Given
a measurement z ∈ Rm with likelihood PDF p(z|x), the
posterior PDF of x conditioned on z is determined by Bayes’
theorem [25]:

p(x|z) = p(z|x)p(x)
p(z)

, (1)

where p(z) is the marginal measurement PDF, computed as
p(z) =

∫
X p(z|x)p(x) dx. Computing the posterior PDF in

(1) is often intractable because p(z) may not have a closed
form, except when the prior p(x) and the likelihood p(z|x) are
a conjugate pair. To calculate the posterior of non-conjugate
prior and likelihood, approximation methods are needed.

This problem can be approached using VI methods [9,
Ch. 10], which approximate the posterior p(x|z) in (1) using a
PDF q(x) with tractable expression, termed variational density.
To perform the approximation, VI minimizes the KL diver-
gence between the true posterior p(x|z) and the variational
density q(x):

DKL

(
q(x)∥p(x|z)

)
=

∫
X
q(x) log

(
q(x)

p(x|z)

)
dx.

The variational density q(x) can be represented as a collection
of weighted particles [10], leading to the particle-based VI
considered in this paper.

This paper considers a constrained VI problem with support
constraints: the variational density is restricted to take nonzero
values only within a designated set, which we term safe. The

set S is defined as the intersection of N inequality-constrained
sets, each specified implicitly by a continuously differentiable
function gi : X → R:

S =
⋂
i∈I

Si, Si = {x ∈ X | gi(x) ≥ 0},

where I = {1, . . . , N}. Equality constraints specified by
ge(x) can be equivalently represented by a pair of inequality
constraints ge(x) = 0 ⇔ [ge(x),−ge(x)]⊤ ≥ 0. The safe
set can encode, for instance, geometric constraints, such as
manifold constraints in robot state estimation. We want to find
a variational density that matches the Bayes’ posterior as much
as possible while satisfying the safety constraint q(x) = 0, for
all x ∈ X \ S. This constraint is essential to ensure that the
density is supported on the safe set. We make the following
assumptions throughout the paper.

Assumption II.1 (Feasibility). The state space X ⊂ Rn is
bounded and the safe set S is nonempty.

The above assumption ensures the existence of a feasible
solution to the constrained VI problem. In addition, we make
the following assumption on the variational densities.

Assumption II.2 (Variational Density Family). The varia-
tional density q(x) belongs to the family P = {p(x) ∈
L1(X ) |

∫
X p(x) dx = 1, p(x) ≥ 0}, where L1(X ) is the

space of absolutely integrable functions on X with respect to
the Lebesgue measure.

Assumption II.2 ensures that the variational densities are
valid PDFs, supported on the state space X . We formulate the
constrained VI problem as follows.

Problem 1. Find a variational density q(x) that solves the
optimization problem:

min
q(x)∈P

DKL

(
q(x)∥p(x|z)

)
s.t.

∫
X\S

q(x) dx = 0.
(2)

The constraint ensures that q(x) has support strictly on S.

III. VARIATIONAL INFERENCE USING PARTICLE FLOW

Before considering the constrained formulation in Prob-
lem 1, we review a gradient flow method for solving uncon-
strained VI problems [26]. In this approach, an initial guess for
the variational density is modified by following the steepest
descent direction of the KL divergence functional. This yields
a continuous-time trajectory q(x; t) whose asymptotic limit is
a solution to the VI problem.

A. Gradient Flow
The tangent space TqP of the density family P at a PDF

q ∈ P is [26]:

TqP =
{
σ(x) ∈ L1(X ) |

∫
σ(x) dx = 0

}
.

The cotangent space T ∗
q P is the dual of TqP . We can

introduce a bilinear map ⟨·, ·⟩P as the duality pairing T ∗
q P ×



TqP → R. For any ψ ∈ T ∗
q P and σ ∈ TqP , the pairing

can be identified as ⟨ψ, σ⟩P =
∫
X ψ(x)σ(x) dx. The first

variation of the KL divergence δDKL(q||p)
δq with respect to

q ∈ P is an element of the cotangent space T ∗
q P , given

by δDKL(q||p)
δq = 1 + log q

p . Given a metric tensor at q,
denoted by M(q) : TqP → T ∗

q P , we can express the
Riemannian metric gq : TqP × TqP → R as gq(σ1, σ2) =
⟨M(q)σ1, σ2⟩P . The gradient of the KL divergence under
the Riemannian metric, denoted by ∇qDKL(q||p), is defined
as: gq(∇qDKL(q||p), σ) =

〈 δDKL(q||p)
δq , σ

〉
P , for any σ ∈

TqP . Using the metric tensor, we can write ∇qDKL(q||p) =
M−1(q) δDKL(q||p)

δq . The gradient flow of the KL divergence
with respect to this metric is:

∂q(x; t)

∂t
= −∇qDKL(q||p)

∣∣
q=q(x;t)

. (3)

The convergence of the gradient flow to the optimum depends
on the choice of Riemannian metric. For a detailed analysis
of convergence properties under different metrics, we refer
the reader to [26]. However, implementing the gradient flow
directly is challenging because it is defined over the infinite-
dimensional space of PDFs. To address this, the variational
density q(x; t) can be represented by a finite set of samples
drawn from it, referred to as particles, and its evolution can
be characterized through the evolution of these particles. The
connection between the particle evolution and the gradient
flow dynamics is formalized by the Liouville equation [24],
which we review next.

B. Liouville Equation and Particle Flow
Consider a random process x(t) ∈ Rn governed by the

ordinary differential equation (ODE):

dx(t)

dt
= ϕ(x(t), t), (4)

where ϕ(x(t), t) is the particle drift. Then, the PDF q(x; t) of
x(t) evolves according to the Liouville equation [24]:

∂q(x; t)

∂t
= −∇x ·

(
q(x; t)ϕ(x, t)

)
, (5)

where ∇x· denotes the divergence operator. The Liouville
equation (5) establishes a mapping between the functional
gradient in density space (3) and the particle drift ϕ(x(t), t).
Since the state space X considered in this paper is a subset
of Rn, we impose the following assumption to ensure that the
Liouville equation holds in our setting.

Assumption III.1 (Conservation of Probability Mass). On the
boundary of the state space, the particle drift ϕ(x, t) satisfies
⟨ϕ(x, t), n̂(x)⟩Rn = 0, for all x ∈ ∂X , where ⟨·, ·⟩Rn denotes
the standard Euclidean inner product on Rn and n̂(x) is the
outward unit normal vector to ∂X at x.

This assumption ensures [27] that the trajectories p(x; t)
governed by the Liouville equation (5) remain in P . Note that
the particle drift must remain deterministic given our reliance
on CBF techniques to ensure safety.

Now, consider a particle x(t) sampled from the variational
density q(x; t), whose evolution follows the gradient flow

dynamics in (3). The Liouville equation (5) is used to derive
a corresponding particle drift ϕ(x, t) that induces the desired
gradient flow for the variational density q(x; t), by solving:

∇qDKL(q||p)
∣∣
q=q(x;t)

= ∇x ·
(
q(x; t)ϕ(x, t)

)
. (6)

The evolution of the particle is then governed by (4), referred
to as the particle flow. In this paper, we focus on the particle
flow derived using the Stein Riemannian metric, originally
introduced in [10]. Specifically, we consider the inverse metric
tensor satisfying [26]

M−1(q)ψ = −∇x ·
(
q(x)

∫
X
k(x, ξ)q(ξ)∇ξψ(ξ) dξ

)
,

where ψ ∈ T ∗
q P with k(·, ·) denotes a positive definite kernel.

The particle drift is obtained by solving (6):

ϕd(x, t) = −
∫
X
k(x, ξ)q(ξ; t)∇ξ log

(
q(ξ; t)

p(ξ, z)

)
dξ

=

∫
X
q(ξ; t) (∇ξk(x, ξ) + k(x, ξ)∇ξ log p(ξ, z)) dξ (7)

≈ 1

M

M∑
j=1

(
∇ξk(ξ,x) + k(ξ,x)∇ξ log p(ξ, z)

)∣∣∣∣
ξ=xj(t)

,

where {xj(t)}Mj=1 ∼ q(x; t) are particles sampled from the
variational density at time t. The second equality follows from
integration by parts, while the last step uses Monte Carlo
integration to approximate the expectation.

IV. SAFE PARTICLE FLOW

The gradient flow of the KL divergence in (3) does not
take the constraint in the optimization (2) into consideration.
Directly modifying the gradient flow dynamics is challenging
because of the infinite-dimensional nature of the space of PDFs
and the difficulty of enforcing the constraint.

Our approach to deal with Problem 1 exploits the connection
between the gradient flow dynamics and the particle drift
established by the Liouville equation (6). In the forthcoming
discussion, we first introduce a barrier functional in the space
of PDFs and use it to formulate constraints on the variational
density flow so that its continuous-time trajectory satisfies the
constraint in (3) at all times. Using the Liouville equation,
we then translate the constraints imposed on the variational
density into equivalent constraints on the particle drift. Finally,
we construct a safe particle drift by modifying a desired drift
obtained from the unconstrained VI problem.

A. Barrier Functions
We first review barrier functions in finite-dimensional vector

spaces [28], [29]. Consider an autonomous system ẏ = f(y)
in Rn with state trajectories denoted by y(t). The safety of the
system can be certified by ensuring that the trajectories remain
within a safe set C ⊂ Rn. This is equivalent to showing that
C is forward-invariant [28].

To establish forward invariance, we introduce a continuously
differentiable function b : Rn → R that encodes the safe set
as its zero-superlevel set, C = {y ∈ Rn | b(y) ≥ 0}. Such a
function is called a barrier function. A sufficient condition for



the forward invariance of C is that the barrier function satisfies
a differential inequality along system trajectories: db(y(t))

dt +
αbb(x) ≥ 0, where αb > 0 is a positive constant. This ensures
forward invariance of the safe set [28, Theorem 3.1].

B. Barrier Functional Construction

Since the variational density evolves in the space of PDFs,
rather than in a finite-dimensional vector space, we rely on the
concept of barrier functional [23] to extend the forward in-
variance property to PDF trajectories. Based on the constraint
in (2), the set of feasible densities is:

Ps = {p(x) ∈ P |
∫
X\S

p(x) dx = 0}. (8)

We define the barrier functional h : P → RN , whose ith
component is given by

hi(q(x; t)) = −
∫
X\Si

gi(x)q(x; t) dx, i ∈ I. (9)

We show next that the zero-level set of the barrier functional
coincides with the set of feasible densities defined in (8).

Lemma IV.1 (Consistent Barrier Functional). The zero-level
set of the barrier functional introduced in (9) satisfies {p(x) ∈
P | h(p(x)) = 0} = Ps.

Proof. Based on the definition of the constraint set Si, gi(x) <
0 for all x ∈ X \Si. Consequently, −gi(x)p(x) ≥ 0 for all x ∈
X \ Si. Given the definition in (9), the condition hi(p(x)) =
0 implies that p(x) = 0 for all x ∈ X \ Si. Therefore, if
h(p(x)) = 0, then p(x) = 0 for all x ∈

⋃
i∈I (X \ Si) = X \⋂

i∈I Si = X \ S. Hence, we obtain
∫
X\S p(x) dx = 0.

Based on Lemma IV.1, ensuring forward invariance of Ps

is equivalent to ensuring h(p) = 0. Since h(p) ≥ 0 for all
p ∈ P by definition, this is equivalent to ensuring h(p) ≤ 0.
This yields the following barrier constraint:

dh(q(x; t))

dt
+ αhh(q(x; t)) ≤ 0, (10)

where αh > 0 is a positive design parameter that determines
the convergence rate of q(x; t) to the safe set boundary [30].

C. Safe Particle Flow

The constraint (10) can be used to derive corresponding
constraints on the particle drift ϕ(x, t), hence, establishing
necessary conditions for the particle drift to render the feasible
density set Ps forward invariant.

As we show next, the conditions on the particle drift ϕ(x, t)
can be expressed in terms of its Euclidean inner product with
the gradient of the constraint functions ∇xgi(x). This result
facilitates our construction of a safe particle drift in the next
section using CBF techniques.

Theorem IV.2 (Safe Particle Flow). Let ϕ(x, t) be a particle
drift satisfying, for all i ∈ I,∫

X\Si

q(x; t)⟨∇xgi(x),ϕ(x, t)⟩Rndx≥αhhi(q(x; t)). (11)

Under Assumptions II.1, II.2 and III.1, the particle flow (4)
ensures that the feasible density set Ps is forward-invariant
and exponentially stable.

Proof. Assumption II.1 ensures that the feasible density set is
nonempty. Under the regularity conditions stated in Assump-
tion II.2, the time derivative of the ith component of the barrier
functional is given by

dhi(q(x; t))

dt
=

〈δhi(q(x; t))
δq(x; t)

,
∂q(x; t)

∂t

〉
P . (12)

Observe that each barrier functional component in (9) can
be expressed as an inner product between a scaled indi-
cator function and the variational density: hi(q(x; t)) =
−
〈
gi(x)IX\Si

(x), q(x, t)
〉
P . By the linearity of the inner

product operator, we obtain:

δhi(q(x; t))

δq(x; t)
= −gi(x)IX\Si

(x). (13)

Since the variational density evolution is governed by the
Liouville equation, substituting (5) and (13) into (12) yields:
dhi(q(x;t))

dt =
∫
X\Si

gi(x)∇x ·
(
q(x; t)ϕ(x, t)

)
dx. This expres-

sion can be simplified using Green’s theorem [31], yielding

dhi(q(x; t))

dt
=

∮
Γi

gi(x)q(x; t) ⟨ϕ(x, t), n̂i(x)⟩Rn dx

−
∫
X\Si

q(x; t)⟨∇xgi(x),ϕ(x, t)⟩Rn dx,

where Γi := ∂(X \ Si) and n̂i(x) is the outward unit normal
vector to the boundary Γi. Since the boundary Γi satisfies
Γi ⊆ ∂X

⋃
∂Si, and the boundary of the ith constraint

set satisfies ∂Si ⊆ ∂X
⋃
{x ∈ X |gi(x) = 0}. We have

Γi ⊆ ∂X
⋃
∂{x ∈ X |gi(x) = 0}. By Assumption III.1, we

have ⟨ϕ(x, t), n̂i(x)⟩Rn = 0, for all x ∈ ∂X . As a result,
gi(x) ⟨ϕ(x, t), n̂i(x)⟩Rn = 0 for all x ∈ Γi, which yields∮
Γi
gi(x)q(x; t) ⟨ϕ(x, t), n̂i(x)⟩Rn dx = 0. The condition in

(11) follows from the component-wise form of the constraint
in (10). Forward-invariance of the feasible density set Ps

follows from [23, Theorem 3], while exponential stability is
established via Grönwall’s inequality [32].

Having established conditions under which the particle drift
renders the feasible density set Ps forward invariant and
exponentially stable, we next tackle the construction of a
particle drift satisfying these conditions.

D. Particle Drift Design

Inspired by CBF methods [21], we construct a safe particle
drift ϕ(x, t) by modifying the desired Stein particle drift
ϕd(x, t) in (7) that solves the unconstrained VI problem. We
parameterize the particle drift ϕ(x, t) as follows:

ϕ(x, t) = ϕd(x, t) + u(x, t), (14)

where u : X × [0,∞) → Rn is an auxiliary control term
introduced to modify the desired particle drift. The control
term is chosen to satisfy the following condition for all i ∈ I:

∇xgi(x)
⊤ (ϕd(x, t) + u(x, t)) + αggi(x) ≥ 0, (15)



TABLE I: Runtime comparison of our safe PF, the projected
PF [19], and CSVGD [16]. All methods employ the same ODE
solver and integration time horizon.

Method Exec. Time (s) Avg. It. Time (s) Total It.
Safe PF (ours) 9.922 0.060 164
Projected PF 9.558 0.043 218
CSVGD 176.293 0.187 941

where αg > 0 is a positive constant. An input satisfying (15)
can be obtained by solving the quadratic program:

u(x, t) = argmin
u∈Rn

∥u∥22 (16)

s.t. ∇xgi(x)
⊤ (ϕd(x, t) + u) + αggi(x) ≥ 0, ∀i ∈ I.

The optimization yields a minimally invasive control input
that ensures satisfaction of the constraint (15). However, the
input is well defined contingent upon the feasibility of (16).
In this formulation, each constraint function gi(x) can be
considered as a CBF, and stacking them yields g(x) =
[g1(x), g2(x), . . . , gN (x)]⊤. Feasibility of (16) is guaranteed
if g(x) constitutes a valid vector CBF [22].

Proposition IV.3 (Safe Particle Control). Let g(x) a valid
vector CBF [22, Section II.C], the particle drift ϕ(x, t) defined
by (14), with u(x, t) obtained by solving (16), satisfies (11)
with αh = αg .

Proof. The valid vector CBF condition guarantees the
existence of a control input u(x, t) such that, for
each constraint function gi(x), the particle drift satisfies
⟨∇xgi(x),ϕ(x, t)⟩Rn ≥ −αggi(x) for all x ∈ X . By the defi-
nition of PDFs, we can multiply both sides of the inequality by
q(x; t) to obtain, for all x ∈ X , q(x; t)⟨∇xgi(x),ϕ(x, t)⟩Rn ≥
−αgq(x; t)gi(x). Integrating both sides over X \Si preserves
the inequality∫

X\Si

q(x; t)⟨∇xgi(x),ϕ(x, t)⟩Rn dx

≥ αg

∫
X\Si

−q(x; t)gi(x) dx.

By the definition of the barrier functional (9), we have:∫
X\Si

q(x; t)⟨∇xgi(x),ϕ(x, t)⟩Rn dx ≥ αghi(q(x; t)), for all
i ∈ I, which coincides with (11) for αh = αg .

The key steps of the proposed method are summarized in
Algorithm 1. Instead of the Stein particle drift (7), our method
can be formulated for other desired particle drifts, provided the
associated gradient flow minimizes the KL divergence. Such
drifts can be obtained by solving (6) with the KL divergence
gradient computed under different Riemannian metrics [26].

V. EVALUATION

We evaluate the proposed safe particle flow method on a
Bayesian estimation problem with one equality constraint and
one inequality constraint. We compare the proposed method
with the projection-based approaches [16], [19], and demon-
strate that our method achieves better approximation accuracy
while strictly satisfying the imposed constraints.

Algorithm 1 Safe Particle Flow

Require: Particles {xj(0)}Mj=1, joint density p(x, z), and observa-
tion z̃

Output: Particles {xj(T )}Mj=1 that approximate the solution to (2)
1: function f ({xj(t)}Mj=1, t)
2: for each particle xj(t) do
3: ϕd(xj(t), t) ← Evaluate (7) with p(x, z̃) and
{xk(t)}Mk=1 at (xj(t), t)

4: u(xj(t), t)← Solve (16) with ϕd(xj(t), t) at (xj(t), t)
5: ϕ(xj(t), t)← ϕd(xj(t), t) + u(xj(t), t)

6: return {ϕ(xj(t), t)}Mj=1

7: while ODE solver running do
8: {xj(T )}Mj=1 ← SolveODE(f({xj(t)}Mj=1, t)) with initial-

ization
(
{xj(0)}Mj=1, t = 0

)
and termination time T

9: return {xj(T )}Mj=1

We consider the state space X = {x ∈ R2 | ∥x∥∞ ≤ 103}.
The prior density is a truncated Gaussian supported on X with

x̂ = [0, 0]⊤ and P =

[
15 −5
−5 15

]
. The likelihood function is

a Gaussian density p(z|x) = pN (z;H(x), R) with H(x) =
∥x∥, R = 1, and x∗ = [14.7,−10.1]⊤, where x∗ denotes the
true value of x used to generate the observation. The following
constraints are imposed on the Bayesian estimation problem:

g(x) = π/5− arccos(d⊤x/∥x∥2) ≥ 0

ge(x) = ∥x∥2 − r2 = 0,
(17)

where d = 1√
2
[1,−1]⊤ and r = 15.8. The equality constraint

enforces that the density is supported on a circle of radius r.
The inequality constraint encodes a field-of-view restriction,
requiring the density to lie within a cone centered along
direction d with half-angle π

5 . All methods are initialized with
particles {xj(0)}10

3

j=1 drawn from the prior. The desired particle
drift is given by (7) with an RBF kernel of bandwidth 3.

The results considering both equality and inequality are
shown in Fig. 1c. For reference, we also show in Fig. 1a the
results obtained using the projected particle flow (PF) [19]
and in Fig. 1b the results of constrained Stein variational
gradient descent (CSVGD) [16]. The projected PF satisfies
the equality constraint but violates the inequality constraint.
CSVGD achieves better inequality constraint satisfaction, as
the particles violating the inequality constraint remain close
to the safe region. Our safe PF satisfies both constraints
and achieves a low KL divergence estimate. To exclude
interference between equality and inequality constraints, we
repeated the experiment with only the inequality constraint.
The results are shown in Fig. 2. The projected PF fails to
satisfy the inequality constraint, as shown in Fig. 2a. In
contrast, our safe PF satisfies the inequality constraint while
achieving good convergence, as shown in Fig. 2b. Our method
has computational efficiency comparable to [19], while being
significantly more efficient than [16], as illustrated in Tab. I.

VI. CONCLUSION

We have introduced a novel safe particle flow method to
satisfy constraints in VI problems. We have established that



(a) Projected PF [19] (b) CSVGD [16] (c) Safe PF (ours)

Fig. 1: Comparison of our safe PF with CSVGD [16] and the projected PF
[19]. For each method, the desired particle drift is the Stein particle drift (7).
The region satisfying the inequality constraint in (17) is shown in gray. The
initial and final particles are shown as blue dots and red crosses, respectively.

(a) Projected PF [19] (b) Safe PF (ours)

Fig. 2: Comparison of safe PF with the projected
PF [19], considering only the inequality con-
straint in (17). The initial and final particles are
shown as blue dots and red crosses, respectively.

the constraints on the variational density can be equivalently
reformulated as constraints on the particle drift. Combining
ideas from safety control and the dynamical systems approach
to algorithms, we have shown how to design a particle drift
satisfying those constraints by solving a convex quadratic pro-
gram. Our method proposed a simple yet efficient way to con-
struct a safe particle flow while providing formal guarantees
for constraint satisfaction for the variational density. Future
work will focus on improving the efficiency of our method to
enable real-time and high-dimensional applications, such as
state estimation on manifolds and trajectory optimization.
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