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Abstract

In this and the coming lecture, we will introduce the notion of discrete-time dynamical
systems and observe some of their cool behaviors. We will learn what fixed points are, what
stability means and how to determine it.
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1 Introduction

Set your calculator to radian mode. Suppose you repeatedly press the cosine button starting from
an arbitrary number (choose one right now!), say x0. The successive readouts are x1 = cos x0,
x2 = cos x1, and so on. Can you explain the surprising result that emerges after many iterations?

The rule

xn+1 = cos xn (1)

∗Part of the exposition in this lecture builds upon Chapter 10 of S. H. Strogatz. Nonlinear Dynamics and Chaos.

Westview Press, Cambridge, 1994.

1

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.



1 INTRODUCTION

is an example of discrete-time dynamics. If you have taken physics, you may have been in-
troduced to the word “dynamics”. Here is an online encyclopedia entry for dynamics, courtesy of
Answers.com1:

dynamics A branch of mechanics that deals with the motion of objects; it may be further divided
into kinematics, the study of motion without regard to the forces producing it, and kinetics,
the study of the forces that produce or change motion. Motion is caused by an unbalanced
force acting on a body. Such a force will produce either a change in the body’s speed or a
change in the direction of its motion (acceleration). The motion may be either translational
(straight-line) or rotational, or both.

Dynamics is very broadly referred to in engineering as the general word that described the evolution
of any system, be it mechanical (as referenced in the description above), electrical, chemical or even
biological. Mathematical equations are used to described the evolution of a systems dynamics, e.g.,
using differential equations.

The rule above in equation (1) is an example of discrete-time dynamics. It is referred to as “discrete-
time” because this description of the evolution of the systems behavior is characterized by the value
of the variable x as it is evaluated at discrete increments. Specifically, we are looking at the value
of x as n increments, starting from 0 and increasing by steps of size 1. Discrete-time dynamics are
also referred to as “recursion”, “iterated map”, or sometimes “difference equation”. We will use the
reference “map” often in this lecture. A more general iterated map description is

xn+1 = f(xn),

where f could be any function. For example, f(x) = x2.

Anyone who has written an algorithm has in fact designed a discrete-time dynamical system (Com-
puters are discrete-time dynamical systems). The nice thing about discrete-time dynamics is that
the solution can be calculated by simple algebra; starting from a given x0, compute x1, and then
x2, and so on.

From now on, the ordered sequence x0, x1, x2, . . . is called the orbit starting from x0. The sequence
defining the orbit could be finite, that is, if you stop after some number N of iterations, or it could
be infinite. As we will soon see, discrete-time dynamics are capable of wild behavior... even chaos!

Task 1.1 As usual, begin by going to your working directory. Let’s use matlab
R© to plot some

orbits of the map xn+1 = cos xn. To do so, you can use a little program - taken from the web2

- called orbit.m. Make sure you have a copy of this program and iterates.m in your working
directory. Type help orbit in your command window to learn how to use it. For instance,
orbit(’cos’,0,25) should yield what you see in Figure 1 (left). Can you figure out how to ’join
the points’ to make the plot look like Figure 1 (right)?

1http://www.answers.com/topic/dynamics
2The routines orbit.m, iterates.m and cobweb.m are taken from the webpage

http://pages.pomona.edu/~aer04747/MatlabFiles.htm
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1.1 Cobwebs 2 FIXED POINTS
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Figure 1: Orbit of the equation xn+1 = cos xn.

1.1 Cobwebs

A cobweb is a graphical approach to iterating a map. It requires that one first have a figure with
a plot of f(x) versus x and a plot of x versus x (a diagonal 45 degree line). Figure 2 is an example
of such plots for equation (1) with a plot for cos(x) versus x indicated by the curved line. Given
such a figure, we want to find the orbit from some initial point.

In general, the approach works as follows: given the map xn+1 = f(xn) and an initial point x0, draw
a vertical line at x = x0. The vertical value where the line intersects the graph of f(x) is assigned
to x1. Now, trace a horizontal line through this intersection point until it intersects the diagonal
line x versus x. Draw a vertical line through the diagonal intersection point, which corresponds to
a vertical line at x = x1. As before, the vertical location where this line intersects the graph of f(x)
is assigned to x2. Repeating the process N times yields the first N points in the orbit. Cobwebs
can be very helpful, especially for nonlinear systems.

Task 1.2 We can use matlab
R© to plot some cobwebs. Consider the map xn+1 = cos xn. You can

use a little program called cobweb.m. Make sure you have a copy of this program and iterates.m

in your working directory. Type help cobweb in your command window to learn how to use it. For
instance, cobweb(’cos’,0,50,-.25,1.25) should yield what you see in Figure 2.

2 Fixed points

Let f be a function. For instance, you can think of f(x) = cos x, or f(x) = e−x. Let us start
analyzing maps of the form

xn+1 = f(xn) (2)

A point x∗ is a fixed point of (2) if f(x∗) = x∗. A fixed point is also referred to as an equilibrium

point , or equilibrium state .
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2 FIXED POINTS
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Figure 2: Cobweb of the equation xn+1 = cos xn.

Task 2.1 What is the orbit starting from x∗?

Task 2.2 What are the fixed points of f(x) = x + x2 − 1?

We are interested in understanding the stability properties of fixed points. The idea is the following:
what happens if instead of starting exactly at x∗, we start at a point close to x∗, for example, at
x∗ + 0.00001? Will the orbit approach x∗ or will it get repelled from x∗? Understanding these
questions is very important in a wide range of biological and engineering examples. If the orbit
tends to stay close to or approach x∗ when starting nearby, then x∗ is referred to as a stable

equilibrium state. If, on the other hand, the orbit diverges away from x∗, then x∗ is referred to as
an unstable equilibrium state.

Example 2.3 (Common examples of stable and unstable equilibrium states from S. H.
Strogatz. Sync: the emerging science of spontaneous order. Hyperion, New York,
2003) Imaging placing a glass of water on the kitchen table. For a second or two, the water sloshes
around in the glass, then comes to rest. Now the water surface is flat and horizontal. This is an
equilibrium state. Additionally, it is stable, because if we shake the glass a little and then stop, the
water surface will return to the level. By this example, another way of interpreting stability is that
slight disturbances die out. Now, let us consider another example. Take a pencil and sharpen it,
the stand it upright and carefully balance it on its point. Let go. If the pencil is poised perfectly,
it will continue standing upright, so this is an equilibrium state. However, it is obviously unstable.
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2.1 Linear maps 2 FIXED POINTS

The slightest breeze will tip the pencil over and it won’t re-right itself. Thus, the upright position
of a pencil is an unstable equilibrium state.

Task 2.4 Given an example of a system that has a stable equilibrium state. Given an example of
a system that has an unstable equilibrium state.

2.1 Linear maps

Let us start by studying linear maps (which are easy!). Consider a linear map f(x) = ax, with a a
constant.

Task 2.5 What are the fixed points of xn+1 = f(xn) = axn?

You should have discovered that the only fixed point is 0, unless a = 1, in which case all points
are fixed points. Now, what happens if a 6= 1 and instead of starting 0, we start close to it? Let’s
examine this question for some specific values of a.

Task 2.6 Consider the map f(x) = x/2, start at x0 = 1/2 and show what happens after many
iterations with a cobweb. Do the same with f(x) = 2x.

Now, let’s generalize our result for any a. After one iteration, we have x1 = ax0, After two,
x2 = ax1 = a2x0. After n iterations, we get xn = anx0. The conclusion is that if |a| < 1, then
xn → 0, and instead if |a| > 1, then xn → ∞. So the fixed point 0 is stable if |a| ≤ 1 and unstable

if |a| > 1.

2.2 Nonlinear maps

To determine the stability of x∗, let’s define the variables ηn = xn−x∗, which represent the deviation
of the updated variable xn from the fixed point x∗. Given a starting η0 6= 0, we have the initial
point x0 = x∗ + η0. Let us see whether the orbit is attracted or repelled from x∗. In other words,
let’s see whether the deviation ηn grows or decays as n increases. Substitution for the first iteration
yields

x1 = f(x0) = f(x∗ + η0) = f(x∗) + f ′(x∗)η0 + error

In this equation, we have used what is called a “Taylor approximation”. Don’t worry if you don’t
know about it. It simply says that, up to small error, one can approximate the value of the function
f at x∗ +η by the value of f at x∗ and a small correction involving the derivative of f at x∗. (Don’t
worry also if you don’t know what a derivative is - we’ll provide it for you when necessary).

Now, using x1 = x∗ + η1, the above equation can be rewritten as

x∗ + η1 = x∗ + f ′(x∗)η0 + error

or equivalently,

η1 = f ′(x∗)η0 + error
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2.3 The logistic map 2 FIXED POINTS

Let us forget about the term error for now. Then, we obtain the linear map

ηn+1 = f ′(x∗)ηn, n = 0, 1, 2, ...

Task 2.7 Based on our knowledge of linear maps, can you find conditions on f ′(x∗) that guarantee
that the deviation ηn will asymptotically go to 0? Hint: the derivative of f(x) = ax is f ′(x) = a
for any x.

As for linear maps, we deduce that for |f ′(x∗)| < 1, the equilibrium point is linearly stable , and
for |f ′(x∗)| > 1, the equilibrium point is linearly unstable .

Although these conclusions about stability are based on the linearization of the nonlinear map, it
can be proved that they also hold for the original nonlinear map.

Task 2.8 Consider the map xn+1 = x2
n
. Find the fixed points and determine its stability. Draw a

cobweb showing your results. Hint: the derivative of f(x) = x2 is f ′(x) = 2x, for any x.

It turns out that nothing can be said about the stability of a fixed point x∗ of any nonlinear system
when the linearization gives |f ′(x∗)| = 1.

Task 2.9 Consider the map xn+1 = sin xn. Find the fixed points. Can you say something about
the stability of the linearization? Use a cobweb to show that the fixed points are stable.

VERY IMPORTANT! We could develop similar stability tests for maps f which are not 1-
dimensional. Think for instance of the map f(x1, x2) = (sin x1, x1 cos x2). In order to do this, we
would need to learn about matrices and linear algebra (you will learn about this in the future, don’t
worry!).

Instead, in our course, for higher-dimensional maps, we will test stability by simulation. The idea
is that, using matlab

R©, you should check what happens to the orbits of the system if we start from
an initial condition close to the equilibrium point. If the system is stable, then no matter what
initial condition you choose, the orbit should stay close to the equilibrium point. Check for a lot of
different initial conditions to see that this is the case. If the system is unstable, then you should be
able to find an initial condition such that the corresponding orbit moves away from the equilibrium.

2.3 The logistic map

The logistic map is defined by

xn+1 = rxn(1 − xn)

Here, xn ≥ 0 is a measure of the population in the nth generation and 0 ≤ r ≤ 4 is the growth rate.

Task 2.10 Plot the function f(x) = rx(1−x) in matlab
R© for different values of r, say r = 1/2, 1, 2,

with values of x between 0 and 1. Where does this function achieve its maximum, that is the value
of x where f(x) is the highest? Does this value of x where f is at a maximum depend on the value
of r that you chose?
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3 HOMEWORK

Task 2.11 Find the equilibrium points of the logistic map and determine its stability properties.
Hint: the derivative of f(x) = rx(1 − x) is f ′(x) = r(1 − 2x) for any x.

The results of the previous question are clarified by the graphical analysis of Figure 3.
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Figure 3: Plot of the function rx(1 − x) for different values of r.

3 Homework

If you have not already done so, complete at least six of the following Tasks introduced in this
lecture:

(i) Task 2.1

(ii) Task 2.2

(iii) Task 2.4

(iv) Task 2.5

(v) Task 2.6

(vi) Task 2.7

(vii) Task 2.8

(viii) Task 2.11
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