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Abstract

In this lecture we give our first steps into the realm of feedback control. First, we will get a
rough idea of what feedback is. Then, we will see how to turn unstable discrete-time dynamical
systems into stable ones using feedback. What we have learned in previous lectures will be very
helpful to do this. We will even be able to assign fixed points of the system wherever we want.
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1 Introduction: the magic of feedback

The following paragraph, taken from the introduction of the book “K. J. Åström and R. M. Murray.
Feedback Systems: An Introduction for Scientists and Engineers1. Preprint, 2005,” nicely describes
what the nature of feedback is.

The term feedback is used to refer to a situation in which two (or more) dynamical systems
are connected together such that each system influences the other and their dynamics are
thus strongly coupled. By dynamical system, we refer to a system whose behavior changes
over time, often in response to external stimulation or forcing. Simple causal reasoning about
a feedback system is difficult because the first system influences the second and the second
system influences the first, leading to a circular argument. This makes reasoning based on

1Available online at http://www.cds.caltech.edu/~murray/amwiki.
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2 CONTROLLED DYNAMICS

cause and effect tricky and it is necessary to analyze the system as a whole. A consequence
of this is that the behavior of feedback systems is often counterintuitive and it is therefore
necessary to resort to formal methods to understand them.

So, various important things to notice: (i) feedback is “interconnection” between systems; (ii) just
when we think we understand how a feedback system works, the interconnection between different
systems might have surprises in store for us. As said above, reasoning based on cause and effect
gets tricky (it’s like asking: who came first, the chicken or the egg? It gets crazy!); and (iii) you’ll
be exposed in the coming lectures to powerful formal methods that will get you through the tricky
business and allow you to analyze the behavior of feedback systems.

Feedback allows us to make a system behave as desired. It keeps variables constant and stabilizes
unstable systems. Feedback also reduces the effects of disturbances and component variations,
allowing a new freedom to designers.

Feedback is ubiquitous in both natural and engineered systems. Everyday life applications of feed-
back include:

(i) flight control

(ii) feedback amplifier for long-distance telephone networks and television networks

(iii) CD player

(iv) And so many more...

2 Controlled dynamics

From the standpoint of control it is interesting to explore the possibilities of shaping the dynamic
behavior of a system by using feedback control. Let us first introduce the class of systems we are
talking about. We consider controlled systems of the form

xk+1 = f(xk, uk) (1)

In general, external inputs (forces, electrical currents, chemical concentrations) are bounded (i.e.,
we cannot produce a force as infinitely large!). Therefore, u is restricted to belong to some bounded
set, let’s call it U . We only know about 1-dimensional systems, so for us U ⊂ R, which in English,
means that the set U is a subset of the real numbers. For example, U = [0, 1], which is all numbers
x satisfying 0 ≤ x ≤ 1. Later in the course we will also consider higher-dimensional systems.

If we do not exert any control over the system (i.e., the system is unforced), then uk = 0, and we
simply have

xk+1 = f(xk, 0)

This is a discrete-time dynamical system like the ones we saw in Lecture 3.
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3 SHAPING THE DYNAMICS: FORCING DESIRED EQUILIBRIUM POINTS

Example 2.1 (Cruise control example) Recall the cruise control model

vk+1 = vk +
∆

m
[−bvk + ueng,k + uhill]. (2)

Recall also that the speed of the car vk is the state (so x = v here) and the gas pedal ueng,k is the
control input. We’ve included the subscript k now to emphasize that the control signal can change
with time. The map f is f(v, u) = v + ∆

m
[−bv + ueng,k + uhill]. The unforced system (i.e., when the

engine is off and the road is flat) is

vk+1 = vk +
∆

m
[−bvk] (3)

Task 2.2 What are the equilibrium points of (3)?

3 Shaping the dynamics: forcing desired equilibrium points

The first thing we may be interested in is to find controls that give desired equilibrium points. For
that purpose we will consider a controlled system of the form (1). The equilibrium of this system
are given by f(xeq, ueq) = xeq. Therefore, the equilibria that can be achieved the points x such that
there exist u ∈ U with f(x, u) = x. (Note: The notation u ∈ U simply means that u is in the set
U).

Task 3.1 (Cruise control example) Let vss a desired velocity for our car. Assume for simplicity
that we are driving on a flat road, so that uhill = 0 in (2). Find the control ueng,ss that makes vss

an equilibrium.

Based on this discussion, here it is a simple algorithm to make your desired point an equilibrium of
the system:

(i) Select you desired “wanna-be” equilibrium point xss

(ii) Find the corresponding control uss such that f(xss, uss) = xss

(iii) Choose the control input to be uk = uss for the system (1).

After performing these two steps, we have the new system

xk+1 = f(xk, uss)

We have managed to make the “wanna-be” equilibrium point xss into an actual fixed point of the
system! But in general, this equilibrium can be stable or unstable. Let’s see it in the cruise-controller
example.

Task 3.2 (Cruise control example) Let’s plot the orbits of cruise controller example on a flat
road once we have chosen the input ueng,ss that makes our desired speed vss an equilibrium. There-
fore, consider the equation

vk+1 = vk +
∆

m
[−bvk + ueng,ss], (4)
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4 SHAPING THE DYNAMICS: MAKING THE EQUILIBRIUM STABLE

where you should substitute ueng,ss by the one you obtained in Task 3.1. Write a program in
matlab

r© that asks for the values of the parameters ∆, b and m, a desired velocity vss, an initial
velocity v0 and the number of iterations N . The program should plot the first N points of the orbit
of (4) starting from v0. Use the following set of values: (i) ∆ = 1, m = 100 and b = 10, and (ii)
∆ = 30, m = 100 and b = 10. Is the equilibrium stable in both cases? Why?

In Task 3.2, we have seen that our strategy has benn only partially successful so far. We got vss to
be an equilibrium of the system, but depending on the values of the parameters, this equilibrium
might be stable or unstable. We certainly don’t want this for our car! We want it to be stable,
independently of the values that the parameters take (within certain limits). We can do this by
means of control. That’s what we explain in the next section.

Task 3.3 Consider the following one-dimensional controlled system

xk+1 = x2
k + uk (5)

Let xss = 2. Find the control uss that makes xeq an equilibrium. Is xss a stable equilibrium point of
the resulting system xk+1 = f(xk, uss)? Plot the first 7 points of the orbit starting from x0 = 2.001.
You should get something like Figure 1
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Figure 1: Orbit starting from x0 = 2.001 of the system xk+1 = x2
k + uss.

4 Shaping the dynamics: making the equilibrium stable

Let’s go over our former steps. Remember the simple algorithm we used to make our desired point
an equilibrium. Let’s slighlty modify the last one to keep our options open. We rewrite it as follows:

(i) Select you desired “wanna-be” equilibrium point xss

(ii) Find the corresponding control uss such that f(xss, uss) = xss
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4 SHAPING THE DYNAMICS: MAKING THE EQUILIBRIUM STABLE

(iii) Choose the control input to be uk = uss + ũk for the system (1). You can think of ũk as a
new control that we have not chosen yet. This is the way in which we keep our options open.

After performing these three steps, we have the new system

xk+1 = f(xk, uss + ũk) = f̃(xk, ũk) (6)

with state x and input ũ. Now, the unforced new system looks like

xk+1 = f̃(xk, 0)

which has xss as an equilibrium point.

Our idea now is to find the feedback ũk that makes the equilibrium stable. Let us illustrate the
basic idea of making this equilibrium stable. The controller

ũk = K(xss − xk) (7)

is called a P (P for proportional) controller, because the control action is proportional (with constant
K) to the deviation of the state xk from the desired equilibrium xss.

The idea is that we can tweak K to make the desired equilibrium stable! Let’s see how this works.

Task 4.1 Substitute (7) into equation (6). What is the expression that you get?

After having done Task 4.1, you will have a system that looks like

xk+1 = f̃(xk, K(xss − xk))

For simplicity, let us denote g(xk) = f̃(xk, K(xss − xk)). Then, our system simply looks like
xk+1 = g(xk). We know that g(xss) = xss. Now, what do we know about the stability of this
equilibrium point? Well, we can use what we learned in Lecture 3 to figure it out. Basically, we
have to resort to computing the derivative of g at xss and see if it is larger than 1 (unstable) or
smaller than 1 (stable). Let’s do it. To compute the derivative of g, we have to use the chain rule.
Don’t worry if you do not know about these things. You can just assume that the result obtained
in the next equation is correct (but do not forget to come back to these notes in the future once
you learn how to compute partial derivatives!). We have that the derivative of g is

g′(xss) =
∂f

∂x
(xss, 0) −

∂f

∂u
(xss, 0) · K (8)

Let’s use this in an example.

Example 4.2 Consider the system of Task 3.3. We have obtained the control uss = −2 that makes
xss = 2 an equilibrium of the system xk+1 = x2

k + uk. Choosing uk = uss + ũk = −2 + ũk, we obtain
the system

xk+1 = f̃(xk, ũk) = x2
k − 2 + ũk
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4 SHAPING THE DYNAMICS: MAKING THE EQUILIBRIUM STABLE

Note that the unforced system, xk+1 = x2
k−2 has an unstable equilibrium at xss = 2. Following (7),

we choose ũk = K(xss − xk) to get

xk+1 = g(xk) = x2
k − 2 + K(2 − xk)

From equation (8), we compute g′(xss) = 2xss − K = 4 − K. Therefore, if we choose K such that
3 < K < 5, we get |g′(xss)| < 1 and xss is stable.

Task 4.3 Pick K between 3 and 5, and plot various orbits starting close to the equilibrium point
2 of the system

xk+1 = x2
k − 2 + K(2 − xk)

You should get orbits that look like the ones in Figure 2. What difference do you observe with
respect to the plot in Task 3.3?
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Figure 2: Orbits starting from x0 = 2.5 (left) and x0 = 1.6 (right) of the system xk+1 = x2
k − 2 +

4(2 − xk).

Example 4.2 reveals the magic of feedback. By appropriately choosing the constant K, we can
make stable an otherwise unstable equilibrium! How to choose K is determined by equation (8):
you should pick K such that |g′(xk)| < 1.
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