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Abstract

In this lecture, we use feedback control into a more complex system: the pendulum. As we
explained in the previous lecture, feedback control can be used to shape the equilibria of the
system, and also to stabilize them. That’s what we will do here. This practice will prepare us
for the Robobrain system.
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1 A guided task: the inverted pendulum

Consider the pendulum in Figure 1. For simplicity, assume that there is no friction with the air.
Then, a model of the motion of the pendulum based on Newton’s second law is

1

∆2
(θk+1 − 2θk + θk−1) = −

g

l
sin θk,

where g = 9.8 corresponds to gravity, and l = 9.8 is the pendulum length chosen such that the ratio
g/l = 1. So, from now on, we will replace g/l with 1.

Let us express this in the form of a discrete-time dynamical system, as we know. Define x = (z, y)
as a 2-dimensional vector and at time instant k, let xk = (zk, yk) = (θk, θk−1). Then, we have the
2-dimensional iterated map

xk+1 = f(xk), (1)

1

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.



1.1 Shaping the equilibrium 1 A GUIDED TASK: THE INVERTED PENDULUM

mθ

Figure 1: Pendulum example.

where
f(xk) = f(θk, θk−1) = (2θk − θk−1 − ∆2 sin θk, θk),

or
f(xk) = f(zk, yk) = (2zk − yk − ∆2 sin zk, zk),

It should be clear that the map f is now 2-dimensional, instead of 1-dimensional. All the notions
we have introduced so far about equilibrium points, stability, etc, are valid in this context. We
will check stability through simulations, although there exist formal methods to study it – but they
require linear algebra, that we do not know yet. As in the predator-prey system, we can write the
two equations in the more familiar form

{

zk+1 = 2zk − yk − ∆2 sin zk

yk+1 = zk
(2)

where k = 1, 2, 3, . . . . Also, as before, given a starting state x1 = (z1, y1) = (θ1, θ0), we can compute
the orbit, that is, the trajectory or path of angles θ, for the pendulum, for some number of iterations.

Task 1.1 Why do we start with k = 1? What are the equilibrium points of the pendulum? Use
equation (1) or (2) to find them. Use matlab

R© to determine the stability of each one (requires
writing a program like the predator-prey program...).

1.1 Shaping the equilibrium

Now, assume we can push the pendulum. Let’s introduce this force in the model of its motion,

1

∆2
(θk+1 − 2θk + θk−1) = − sin θk + uk.

By means of the input uk, we can affect the dynamics of the pendulum. Using the map f above,
this can be rewritten as

{

zk+1 = 2zk − yk − ∆2 sin zk + ∆2uk

yk+1 = zk
(3)
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The first thing we are going to do is to select ueq such that θeq = π
2

is an equilibrium (funny position,
eh!).

Task 1.2 Find ueq such that xeq = (π
2
, π

2
) is an equilibrium of the system (3).

Once we have found ueq, we select uk = ueq + ũk, and substitute it in equation (3) to get

{

zk+1 = 2zk − yk − ∆2 sin zk + ∆2(ueq + ũk)
yk+1 = zk

(4)

The unforced system looks now like

{

zk+1 = 2zk − yk − ∆2 sin zk + ∆2ueq

yk+1 = zk

and, at equilibrium, we have

{

zk = 2zk − zk − ∆2 sin zk + ∆2ueq

yk = zk
, for all k = 1, 2, 3, . . .

If ueq was chosen properly, then the only solution is xeq = (π
2
, π

2
).

Task 1.3 Is the equilibrium xeq = (π
2
, π

2
) of the unforced system xk+1 = f̃(xk, 0) stable or unstable?

To figure this out, you can plot various orbits of the unforced dynamics starting close to xeq = (π
2
, π

2
).

To do this, use in matlab
R© the program pendulum.m. First download it from the usual website and

place it in your working directory. Type “help pendulum” in the command window to understand
the syntax of the function. For instance, pendulum([pi/2+ .1, pi/2+ .1], pi/2, .5, 50, 0, 0) should give
a plot similar to Figure 2.
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Pendulum example with feedback control

Figure 2: Orbit starting from x0 = (π
2

+ .1, π
2

+ .1) of the unforced system xk+1 = f̃(xk, 0).
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1.2 Making the equilibrium stable

After having done Task 1.3, we have understood that our desired equilibrium is not a stable equi-
librium of the unforced system. Let’s use feedback control to stabilize it. The idea is to choose ũk

above so that xeq is stable. To do that, we use a term proportional to the error,

ũk = K1(θeq − zk) + K2(θeq − yk)

The examples we have seen so far were only one-dimensional. Instead, this pendulum example is
two-dimensional. That’s the reason why we have to include both states in the design of our feedback
controller. Substituting into equation (4), we get

{

zk+1 = 2zk − yk − ∆2 sin zk + ∆2 [ueq + K1(θeq − zk) + K2(θeq − yk)]
yk+1 = zk

(5)

The idea to make xeq stable is the same as in previous examples: choose K1 and K2 in the appro-
priate way. Now, in order to do that mathematically, you would need to know about linear algebra,
matrices and eigenvalues. Since that is advanced math stuff, we are not going to go into it. Instead,
we will choose K1 and K2 “by hand”, and check in matlab

R© that our selection is correct.

Task 1.4 Choose your preferred pendulum configuration θdes (e.g., you might choose θdes = π for
the inverted pendulum position, or θdes = π/2 for the funny horizontal configuration). Find values
for K1 and K2 that make the desired equilibrium stable. You can rely on the matlab

R© program
pendulum.m to do the check. With appropriate choices of K1 and K2 you should get plots that look
like Figure 3.
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Pendulum example with feedback control

Figure 3: Orbits starting from x0 = (π
2

+ .1, π
2

+ .1) (left) and x0 = (π − .3, π − .25) (right) of the

system xk+1 = f̃(xk, ũk), with ũk = K1(θeq − zk)+K2(θeq −yk), where θeq = π/2 (left) and θeq = π
(right), respectively.
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2 Influence of model errors: PI controllers

If there are model errors or disturbances the actual equilibrium may deviate from its desired value.

Example 2.1 (Cruise control) In the cruise control example of Lecture 1, given a desired speed
vdes, we used a proportional control

ueng,k = K(vdes − vk) (6)

in Bob’s model:

vk+1 = vk +
∆

m
[−bvk + ueng,k + uhill]. (7)

When we computed the steady-state equilibrium vss, we got as a result

vss =
K

b + K
vdes +

1

b + K
uhill

Therefore, the perturbation caused by the slope of the hill causes the steady-state of the system vss

to deviate from the desired value vdes.

This can be overcome by means of a PI (P for proportional and I for integral) controller. This
name comes from the fact that the control signal is the sum of two terms, one proportional to the
error and the other proportional to the discrete integral of the error. Let’s see how this works in
the cruise controller example.

Instead of (6), consider the following controller:

ueng,k = K(vdes − vk) +
k

∑

i=1

∆(vdes − vi) (8)

The term we have added to the controller (6) is an approximation to the integral of the error across
time. You probably don’t know anything about integrals yet, but you soon will! For now, let’s just
say that there is a reason behind our choice.

Let’s substitute (8) into Bob’s model (7) to get

vk+1 = vk +
∆

m
[−bvk + K(vdes − vk) +

k
∑

i=1

∆(vdes − vi) + uhill].

Let us now compute the value of the steady-state velocity. Assume the system is in steady state vss,
that is, the orbit starting at vss is simply (vss, vss, vss, . . . ). Then the previous equation looks like

vss = vss +
∆

m
[−bvss + K(vdes − vss) +

k
∑

i=1

∆(vdes − vss) + uhill].

Simplifying, we get

0 = −bvss + K(vdes − vss) + k ∆(vdes − vss) + uhill,
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which can also be rewritten

(b + K)vss − Kvdes − uhill = k ∆(vdes − vss), k = 0, 1, 2, 3, . . .

The right-hand side of this equation has to be necessarily zero.

Task 2.2 Why?

The right-hand side of the equation being zero, that means that vss = vdes, which is what we were
looking for. Therefore, the idea of the PI controller is to drive the steady state error to be zero by
applying an increasingly large input when vss 6= vdes (through the integral term).

Task 2.3 Let’s check the usefulness of PI controllers. Take the matlab
R© program that you de-

signed in Lecture 6 to simulate the cruise control example on a flat road (i.e., uhill = 0). We found
that ueng,des = bvdes makes vdes an equilibrium. Do the following

(i) Choose ũeng,k in ueng,k = ueng,des + ũeng,k that makes vdes = 55 an stable equilibrium point
on a flat road.

(ii) Plot the orbit of the system when we are climbing a hill with the car of slope 1 (uhill = 1).
Are we going at our desired speed? Why?

(iii) Design a PI controller that will make the cruise controller robust to perturbations like the
hill slope. Plot the orbit of the system when we are climbing a hill with the car of slope 1
(uhill = 1). Are we going at our desired speed now? Why?
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