
CONTENTS 1 ROBOBRAIN MODEL

COSMOS: Making Robots and Making Robots Intelligent

Lecture 8: Analysis and simulation of the Robobrain model

Jorge Cortés and William B. Dunbar

October 27, 2005

Abstract

In this lecture, we discuss the model for Robobrain and analyze its open-loop behavior, i.e.,
we determine the fixed-points and their stability. We also show motivate the need for feedback
control versus open-loop control. The feedback control design of Robobrain will be treated in
the next lecture.

Contents

1 Robobrain model 1

2 Open-Loop Analysis 2

3 Wall Following Control 5

1 Robobrain model

Recall the Robobrain model that we introduced in Lecture 5. To begin, examine the schematic
image of an enlarged Robobrain robot sitting the middle of a room, given in Figure 1.

From previous discussions, recall that ∆ is the sample period and denote the sample times as
tk = k ∗ ∆, k = 0, 1, 2, Also, xk is the x position of the robot at time tk, using the same
subscript notation for the other variables. The discrete-time dynamic model of the robot dynamics
is given by

xk+1 = xk + ∆uk cos(θk)
yk+1 = yk + ∆uk sin(θk)
θk+1 = θk + ∆vk

(1)

Indicated in the figure are the forward velocity u and the turning velocity v, defined by

u =
1

2
r(ωR + ωL), v =

2π

w
r(ωR − ωL),

1

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.

2 OPEN-LOOP ANALYSIS

Figure 1: Schematic drawing of an enlarged Robobrain robot operating in a room. The border in
the drawing represents the room walls, and the coordinate system shows that the lower left corner
is denoted (x, y) = (0, 0) and the upper right corner is denoted (x, y) = (X, Y), with X and Y given
by the dimensions of the room.

where w is the width of Robobrain (the distance between the wheels), and ωL and ωR are the
angular velocities of the left and right wheels (measured in radians per second).

Task 1.1 Give an example of uncertainty or disturbances that are not accounted for in the Robobrain
model in equation (1).

Task 1.2 In practice, you will be designing u and v, but actually controlling the angular velocities
ωL and ωR on Robobrain. What are the equations for ωL and ωR in terms of the controls u and v?
Why is it useful to have these formulas?

2 Open-Loop Analysis

In this section, we shall do some analysis on the model of Robobrain, such as finding the fixed-points
(equilibrium points) and determining their stability.

Task 2.1 What are the equilibrium states (xeq, yeq, θeq) for the Robobrain model in equation (1)?
What are the corresponding equilibrium control inputs (ueq, veq)?

For our purposes, let’s define stability as follows:

Definition 2.2 An equilibrium state (xeq, yeq, θeq) is (asymptotically) stable if, by applying the
equilibrium control (ueq, veq) and starting with (x0, y0, θ0) reasonably close to (xeq, yeq, θeq), the

2

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.

2 OPEN-LOOP ANALYSIS

state (xk, yk, θk) → (xeq, yeq, θeq) as k grows larger and larger. In other words, the orbit approaches
and eventually reaches the equilibrium state, possibly even in finite time.

Task 2.3 Using your intuition and the previously computed equilibrium values, is any equilibrium
state for Robobrain stable? Why or why not?

For the purposes of analyzing our control, we will need simulations to determine if our control design
gives us what we want, such as stability and good performance.

Task 2.4 Write a matlab
R© function robobrain.m that computes the orbit for xk, yk and θk given

the following control signals:

uk = 4, k = 0, 1, 2, ...,

vk = 4 sin(2πtk), k = 0, 1, 2, ...

Take the initial state to be (x0, y0, θ0) = (2, 0, π/4). Let ∆ = 0.01 and compute the orbit for
500 iterations. Create two plots to show your orbit results (you can use the matlab

R© command
subplot to do this). One plot should show y vs. x, and the other should show θ vs. time (recall
that tk = ∆ ∗ k). You should get a plot like the one shown in Figure 2

Figure 2: Plot of y vs. x for the simulation conditions stated in Task 2.4.

Note that the control signals are open-loop in the sense that there is no feedback from the actual
states into the model of Robobrain. Instead, we specify our controls ahead of time, without ever

3

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.

2 OPEN-LOOP ANALYSIS

looking during the motion of Robobrain to its actual state or trajectory. As you might expect, this
has big risks. For one thing, do you think this open-loop strategy will be robust to disturbances?
Let’s see it. To demonstrate the need for feedback, let’s inject a disturbance into the model. Assume
that the orbits that you achieved in Task 2.4 are the desired behavior for the robot.

Task 2.5 Write a matlab
R© function robobrainDist.m that computes the orbit for x̃k, ỹk and

θ̃k, where the model for these states is given by

x̃k+1 = x̃k + ∆uk cos(θ̃k) + 0.1 sin(πx̃k/X)

ỹk+1 = ỹk + ∆uk sin(θ̃k) + 0.15 sin(πỹk/Y)

θ̃k+1 = θ̃k + ∆vk

Use the same initial condition, control signal and parameter values as in the previous task, and
assume X = Y = 20. How different are the two orbits? Could there be any physical meaning to
this type of uncertainty? How is this example indicative of the need for feedback, given that the
desired orbit is the one you obtained with the “disturbance free” model? You should get a plot like
the one shown in Figure 3

Figure 3: Plot of y vs. x for the simulation conditions stated in Task 2.5.

4

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.

3 WALL FOLLOWING CONTROL

3 Wall Following Control

The objective of this control design is for the robot to approach any wall in any room or hall way
and, upon detecting the wall using IR sensors, turn to follow the wall at a specified separation
distance dsep. The robot should achieve wall following keeping the wall on its left.

Each robot is outfitted with four IR sensors, each with range of detection that is a narrow cone in
shape. Of the four sensors, two are facing forward and two are facing left. Denote the measured
distances to an object from each sensor as follows: df,l is measured from the front left, df,r from
the front right, dl,b from the left back, and dl,f from the left facing sensor at the front corner of
Robobrain. An examination of the Robobrain platform will clarify where these sensors are placed.
From the sensor distance measurements, we define the forward average distance as df = (df,l+df,r)/2
and the left average distance as dl = (dl,b +dl,f)/2. Since these distance measurements are changing
in time, we will define each distance at any update k (at time tk) by writing d(·)(tk). So, for example,
dl,b(tk) is the distance from the left back sensor to the wall at time tk.

In reality, the distance is calculated based on voltage signals from the IR sensor, and these signals
are a nonlinear function of the actual distance to the object being detected, requiring calibration.

For simplicity, wall following will be performed in a long hall way. Eventually, “disturbances” will
be added in the form of low degree ramps that come out and back from the hall way wall. As the
wall is initially approached, up to two IR sensors will detect the wall.

The following algorithms define how the IR distance measurements are used to compute the con-
figuration variables x and θ, assuming a straight long hallway. First, we have the initialization
procedure.

Name: Robobrain sensor initialization algorithm
Goal: Initialize position of Robobrain to follow a wall

1: Go forward with control u = vnom and v = 0 until df (t) ≈ 2dsep. The positive scalar vnom is
the nominal wall following velocity, defined to be some percentage of the maximum velocity of
a wheel.

2: Turn CW slowly in place with control u = 0 and v = −0.05vnom until dl,f (t) registers wall
measurements. Continue to turn slowly, keeping track of the decreasing values of dl,f (t). As
soon as dl,f (t) begins to increase, stop.

3: Reset time to be t0 = 0 and define θ0 = π/2 and x0 = dl(t0). Note that dl(t0) = dl,b(t0) =
dl,f (t0).

Task 3.1 How might you rewrite step 2 using dl,b instead of dl,f? In step 3, why is it that dl(t0) =
dl,b(t0) = dl,f (t0)? Can we determine what y0 is based on the sensor data? Is there a way to define
θ0 and y0 and not x0?

After initialization, we will need the sensors to update the position xk and the orientation θk as
k increments in value by 1, 2, 3, These updated states are required for feedback. The following
algorithm defines how the states updates are done.

5

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.

3 WALL FOLLOWING CONTROL

Name: Robobrain sensor update algorithm
Goal: Initialize position of Robobrain to follow a wall

For all k = 1, 2, 3, ..., the configurations xk and θk are given as follows:

1: set θk = θ0 + αk

2: set xk = 1
2 [dl,f (tk) + dl,b(tk) + w] cos(αk), where αk = arctan

(

dl,b(tk)−dl,f (tk)
l

)

and l is the

length of Robobrain.

Task 3.2 Why are we required to convert IR sensor data into state variable data?

Task 3.3 Write a program that converts the four scalar distance measurements into the x and θ
state values using the equations given above. Can anyone derive these equations?

6

Copyright c© 2005 by William Dunbar and Jorge Cortés. Permission is granted by the authors to copy, distribute

and modify this file, provided that the original source is acknowledged.

	Robobrain model
	Open-Loop Analysis
	Wall Following Control

