
MAE140 - Linear Circuits - Fall 11
Final, December 7

Instructions

(i) The exam is open book. You may use your class notes and textbook. You may use a hand calculator
with no communication capabilities

(ii) You have 180 minutes

(iii) Do not forget to write your name, student number, and instructor

(iv) On the questions for which we have given the answers, please provide detailed derivations.

(v) The exam has 6 questions for a total of 60 points and 5 bonus points
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Figure 1: Circuits for Question 1.

1. Equivalent Circuits

Part I: [5 points] Assuming zero initial conditions, transform the circuit into the s-domain and find
the impedance equivalent to the circuit in Figure 1(a) as seen from terminals A and B. The answer
should be given as a ratio of two polynomials.

Part II: [5 points] Assuming that the initial condition of the inductor is as indicated in the diagram,
redraw the circuit shown in Figure 1(b) in the s-domain. Then use source transformation to find
the s-domain Norton equivalent of this circuit as seen from terminals A and B.

Solution: Part I:

Since all initial conditions are zero, it is easy to
transform the circuit to the s-domain.

[1 point]
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We now need to go through the different combinations
of impedances carefully. We begin by combining the
two resistors in series to get

[.5 point]
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Now we combine the two resistors in parallel to get

[1 point]
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Now we combine the two resistors in series to get

[1 point]
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Now we combine the two resistors in parallel to get

[.5 point]
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Finally, we combine all the impedances in series to get

Z(s) =
1

sC
+ sL + 2R =

1 + s2LC + 2RCs

sC

[1 point]
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Part II:

We begin by transforming the circuit into the s-
domain. We use a voltage source for the initial
condition of the inductor – this choice makes our
life easier later.

[2 points]
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Now, we combine the inductor and the resistor in
series

[1 point]
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Next, we do a source transformation to turn the
voltage source into a current source

[1 point]
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Finally, we combine the impedance and resistor in
parallel to get the Norton equivalent

[1 point]

R(sL+R)

A

B

sL+2R

Li(0)
L

sL+R

Page 3



C

R L

R

R/2
i(0)=0
L

v(t)
S

v(0)=v
C 0

A

B

C

i1

i3i2

Figure 2: Nodal and Mesh Analysis Circuit

2. Nodal and Mesh Analysis

Part I: [5 points] Formulate node-voltage equations in the s-domain for the circuit in Figure 2. Use
the reference node and other labels as shown in the figure. Use the initial conditions indicated in
the figure! Transform initial conditions on the capacitor and on the inductor into current sources.
No need to solve any equations!

Part II: [5 points] Formulate mesh-current equations in the s-domain for the circuit in Figure 2. Use
the currents shown in the figure. Use the initial conditions indicated in the figure! Transform
initial conditions on the capacitor and on the inductor into voltage sources. No need to solve
any equations!

Solution: Part I:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of respecting
the polarity and current orientation.

[1 point for correct circuit; 1 point for correct initial conditions]

The voltage source poses a problem for nodal analysis. We can easily take care of it by realizing that
(method #2)

VA(s) = VS(s), (1 point)

and not writing KCL for node A.

Then, we only need to write KCL node equations for nodes B and C. For node B, we have

sC VB(s) +
1
R

(VB(s)− VA(s)) +
1
sL

(VB(s)− VC(s)) = Cv0 (1 point)

For node C, we have

1
R

(VC(s)− VA(s)) +
1
sL

(VC(s)− VB(s)) +
2
R

VC(s) = 0 (1 point)

In matrix form, this looks like

(
sC + 1

R + 1
sL − 1

sL
− 1

sL
1

sL + 3
R

) (
VB(s)
VC(s)

)
=

(
Cv0 + 1

RVS(s)
1
RVS(s)

)

which would have to solved in the unknowns VB(s) and VC(s).

Part II:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of respecting
the polarity and current orientation.

[1 point for correct circuit; 1 point for correct initial conditions]

We need to write mesh equations for meshes 1, 2, 3. For mesh 1, we have

R(I1(s)− I2(s)) +
1

sC
(I1(s)− I3(s)) = −VS(s) +

v0

s
(1 point)

For mesh 2, we have

R(I2(s)− I1(s)) + RI2(s) + sL(I2(s)− I3(s)) = 0 (1 point)

For mesh 3, we have

sL(I3(s)− I2(s)) +
R

2
I3(s) +

1
sC

(I3(s)− I1(s)) = −v0

s
(1 point)

In matrix form, this looks likeR + 1
sC −R − 1

sC
−R 2R + sL −sL
− 1

sC −sL R/2 + sL + 1
sC

 I1(s)
I2(s)
I3(s)

 =

−VS(s) + v0
s

0
−v0

s


which would have to solved in the unknowns I1(s), I2(s) and I3(s).
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Figure 3: RCL circuit for Laplace Analysis

3. Laplace Domain Circuit Analysis

Part I: [3 points] Consider the circuit depicted in Figure 3. The voltage source is constant. The switch
is kept in position A for a very long time. At t = 0 it is moved to position B. Show that the initial
capacitor voltage and inductor currents are given by

vC(0−) = −2V, iL(0−) = 0A.

[Show your work]

Part II: [2 points] Use these initial conditions to transform the circuit into the s-domain for t ≥ 0. Use
equivalent models for the capacitor and the inductor in which the initial conditions appear as
voltage sources.
[Show your work]

Part III: [5 points] Use domain circuit analysis and inverse Laplace transforms to show that the out-

put voltage vo(t) when C =
1
2
F , L = 6H , and R = 8Ω is

vo(t) = (2e−t − 2e−t/3)u(t).

Solution:

Part I:

To find the initial conditions, we substitute the inductor by a short circuit and the capacitor by an
open circuit.
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[1 point]

Then it is clear from the circuit that

iL(0−) = 0 (1 point)

On the other hand, we find by voltage division that

vC(0−) = − R

R + R
4 = −2V. (1 point)

Part II:

Since there is no initial current through the inductor, we do not need to add an independent voltage
source for it. [1 point]

We add one voltage source in series for the capacitor to take care of its initial condition, paying
special attention to the polarities.

-

+

R

RR

1/sC sL

V(s)
o

2/s

[1 point]

Part III:

From our answer to Part II, we can see that the circuit in the s-domain corresponds to an inverting
OpAmp and, therefore, the transform of the output voltage is

Vo(s) = −Z2(s)
Z1(s)

2
s

(1 point)
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with impedances

Z1(s) =
1

sC
+ sL + R =

LCs2 + RCs + 1
sC

Z2(s) = R‖R =
R

2
(1 point)

Substituting into Vo(s), we get

Vo(s) = − RC

LCs2 + RCs + 1
= − 4

3s2 + 4s + 1

To find the output voltage, we need to compute the inverse Laplace transform. Using partial frac-
tions, we set

Vo(s) =
−4

3s2 + 4s + 1
=

k1

s + 1
+

k2

s + 1
3

(.5 points)

You can use your preferred method to find k1 and k2. We use here the cover-up or residue method

k1 = lim
s→−1

(s + 1)Vo(s) = lim
s→−1

−4
3(s + 1

3)
= 2

k2 = lim
s→− 1

3

(s +
1
3
)Vo(s) = lim

s→− 1
3

−4
3(s + 1)

= −2

Therefore, we have

Vo(s) =
2

s + 1
− 2

s + 1
3

(2 points)

The output voltage is then

vo(t) = (2e−t − 2e−t/3)u(t) (.5 points)
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Figure 4: Frequency Response Analysis.

4. Frequency Response Analysis

Part I: [1 point] Assuming zero initial conditions, transform the circuit in Figure 4 into the s-domain.

Solution: Since all initial conditions are zero, there is no need to add an independent source
for the capacitors. Therefore, the circuit in the s-domain looks like

R

R
1/sC

V(s)
o

R

R

-

+

V(s)
i

A
B

C

1/2sC

[1 point]

Part II: [4 points] Show that the transfer function from Vi(s) to Vo(s) is given by

T (s) =
Vo(s)
Vi(s)

=
1

9 + 2RCs
.

[Show your work]
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Hint: use node voltage analysis

Solution: Since we cannot recognize any of the basic building blocks of OpAmps, we resort to
nodal analysis. Nodal analysis at node A gives

1
R

(VA(s)− Vi(s)) + sC(VA(s)− VB(s)) +
1
R

(VA(s)− VC(s)) +
1
R

(VA(s)− Vo(s)) = 0

(1 point)

Nodal analysis at node B gives

sC(VB(s)− VA(s)) + 2sC(VB(s)− Vo(s)) = 0 (1 point)

Nodal analysis at node C gives

1
R

(VC(s)− VA(s)) +
1
R

VC(s) = 0 (1 point)

Additionally, the ideal OpAmp conditions give

VB(s) = VC(s) (1 point)

Substituting this equality into the other three, and solving for VA, VC , and Vo, we get

Vo(s) =
1

9 + 2RCs
Vi(s)

from which the answer follows.

Part III [3 points] Let R = 10 KΩ, C = 100 µF. Compute the gain and phase functions of T (s). What
are the DC gain and the∞-freq gain? What is the cut-off frequency ωc? Use these values to sketch
the magnitude of the frequency response of the circuit. Is this circuit a low-pass, high-pass, or
band-pass filter?
[Explain your answer]

Solution: If R = 10 KΩ, C = 100 µF, the transfer function takes the form

T (s) =
1

9 + 2s

The frequency response is then the complex function

T (jω) =
1

9 + 2jω
, ω ≥ 0

Its magnitude is the gain function,

|T (jω)| = 1
|9 + 2jω|

=
1√

81 + 4ω2
(.5 point)

And its phase is

∠T (jω) = ∠1− ∠(9 + 2jω) = 0− arctan
(

2ω

9

)
(.5 point)
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At ω = 0, we obtain

|T (j0)| = 1
9
, ∠T (j0) = 0 (.5 point)

At ω = ∞, we obtain

|T (j∞)| = 0, ∠T (j∞) = −π

2
(.5 point)

The cut-off frequency is defined by

|T (jωc)| =
Tmax√

2
=

1
9
√

2
.

Solving for it, we find ωc = 9
2 .

[.5 point]
With the values obtained above, you can sketch the magnitude of the frequency response as
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This circuit is a low-pass filter.
[.5 point]

Part IV [2 points] Using what you know about frequency response, compute the steady state re-
sponse vSS

o (t) of this circuit when vi(t) = 2 cos(9
2 t + π

2 ) using the same values of R and C as in
Part III.

Page 12



Solution: To compute the steady-state response to the input vi(t) = 2 cos(9
2 t + π

2 ), we use the
frequency response values for ω = 9

2 . In this way,

vSS
o (t) = 2

∣∣∣∣T (
j
9
2

)∣∣∣∣ cos
(

9
2
t + ∠T (j

9
2
) +

1
2

)
= 2

1
9
√

2
cos

(
9
2
t− π

4
+

π

2

)
=
√

2
9

cos
(

9
2
t +

π

4

)
[1 point for correct expression]

[1 point for correct values]
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5. Active Filter Design

Consider the transfer function

T (s) =
V0(s)
Vi(s)

=
2λ2

s2 + 3λs + 2λ2

where the parameter λ ≥ 0 is to be specified by the user. In this question, always assume zero initial
conditions.

Part I: [3 points] Show that the transfer function T (s) can be realized as a product of two first-order
low-pass filters of the form

T1(s) =
±ω1

s + ω1
, T2(s) =

±ω2

s + ω2

that is, T (s) = T1(s) × T2(s). What is the cut-off frequency and gain of T1(s) and T2(s) in terms
of λ?

Solution: First, factor the denominator of T (s) as

s2 + 3λs + 2λ2 = (s + λ)(s + 2λ)

Then,

T (s) = T1(s)T2(s), T1(s) =
±λ

s + λ
, T2(s) =

±2λ

s + 2λ
(1 point)

The cut-off frequencies of each filter are

ω1 = λ, ω2 = 2λ. (1 point)

The gains are calculated at s = 0j as

|T1(0j)| = 1, |T2(0j)| = 1. (1 point)

Part II: [4 points] Design a circuit that implements T (s) as the product of the two filters T1(s) and
T2(s) using no more than 2 OpAmps.

Solution: Many solutions are possible. Here is one that uses 2 inverting OpAmps,

+

RRL

+

R
C1 1 1

2
2 C

2

v(t)
o

v(t)
i

v(t)
m
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The transfer function from Vi(s) to Vm(s) is

T1(s) = − R1

R1 + sL1
= −

R1
L1

R1
L1

+ s

The transfer function from Vm(s) to Vo(s) is

T2(s) = −
1

sC2

R2 + 1
sC2

= −
1

R2C2

s + 1
R2C2

[4 points]

Part III: [3 points] Find values of the components in your design so that λ = 2000π rad/s.

Solution: For the circuit designed in the previous part, we have

ω1 =
R1

L1
= λ, ω2 =

1
R2C2

= 2λ.

[1 point]
The set of components R1, R2, L1, C2 is then any combination that satisfies

R1

L1
= 2000π, R2C2 =

1
4000π

[1 point]
For instance, for

L1 =
1
π
≈ 318× 10−3 = 318 mH

C2 =
1
π
× 10−9 ≈ 318× 10−12 = 318 pF

then

R1 = 2000πL1 = 2 KΩ

R2 =
1

4000πC2
=

1
4000× 10−9

= .25× 106 = 250 KΩ

[1 point]

Part IV: [3 bonus points] Design a circuit that implements T (s) as the product of the two filters T1(s)
and T2(s) using only 1 OpAmp.

Solution: As before, there are multiple correct answers. A possible design is the following. A
voltage divider with one resistor and one inductor conveniently placed has a transfer function
of the form T1(s) (or T2(s) for that matter). So does a voltage divider with one capacitor and
one resistor. We can use an OpAmp in a voltage follower configuration to connect two such
circuits so that one does not load the other, as in the following figure
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Figure 5: Circuit for Question 6.

6. Chain rule and circuit design

Consider the circuit in Figure 5. You can assume zero initial conditions.

Part I: [3 points] Redraw the circuit in Figure 5 in the s-domain and compute the transfer functions
T1(s), T2(s), T3(s), T4(s) of each one of the stages.

Solution: With no initial conditions, the circuit in the s-domain simply looks like

+

2RR
1/sC

sL

V(s)
i

+

RR

V(s)
o

R

R

stage 1 stage 2 stage 3 stage 4

[1 point]
Stage 1 is a voltage divider, hence

T1(s) =
R

R + 1
sC

=
RCs

RCs + 1
(.5 point)

Stage 2 is an inverting OpAmp, hence

T2(s) = −2R

R
= −2 (.5 point)

Stage 3 is a voltage divider, hence

T3(s) =
sL

R + sL
(.5 point)

Stage 4 is an inverting OpAmp, hence

T4(s) = −R

R
= −1 (.5 point)
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Part II: [2 points] Somebody with a rusty recollection of linear circuits analyzed the circuit in Figure 5
and concluded that the transfer function T (s) from Vi(s) to Vo(s) is equal to the product of the
transfer functions

T̃ (s) = T1(s)× T2(s)× T3(s)× T4(s) =
2RCLs2

RCLs2 + (R2C + L)s + R

of the 4 stages identified in the plot. Identify two problems that invalidate this conclusion.

Solution: The two problems with the conclusion is that

(i) stage 2 is loading stage 1, [1 point]

(ii) stage 4 is loading stage 3, [1 point]

and hence the chain rule does not apply. This is because, in each case, there is current flowing
through the input resistors of the inverting OpAmps.

Part III: [2 points] Modify Figure 5, keeping all 4 stages, so that the resulting circuit does have transfer
function T̃ (s) by adding at most 2 OpAmps.
[Justify your answer]

Solution: Given the problems identified in Part II, the easiest way to do this is by adding 1
OpAmp in a voltage follower configuration between stages 1 and 2, and another one between
stages 3 and 4. The addition of these OpAmps makes the chain rule valid (since no stage i + 1
would load stage i then).

[1 point]
This yields the design

+

2RR

L
+

RR

v(t)
o

R
C

v(t)
i

R

-

+

-

+

[1 point]

Part IV: [3 points] Use stage 1, stage 3 and a noninverting OpAmp to design yet another circuit with
transfer function T̃ (s).
[Provide reasons that justify how you arrived at your design]

Solution: As seen from Part I, the net effect of the two inverting OpAmps in Figure 5 is a gain
of 2 in the transfer function T̃ (s). We can also obtain this gain with a noninverting OpAmp.

[1 point]
Additionally, if we put this OpAmp connecting stages 1 and 3, then there is no load from stage
2 onto stage 1, or from stage 3 onto stage 2, and hence the chain rule applies.
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[1 point]
Such a design would yield

R
L

v(t)
o

RC

v(t)
i

R

-

+

R

[1 point]

Part V: [2 bonus points] What design would you recommend to realize the transfer function T̃ (s), the
answer in Part III or the answer in Part IV? Why?
Hint: you can provide at least 2 different reasons

Solution: The one in Part IV is better because it has a smaller number of components.
[1 bonus point]

The one in Part IV is also better because there is less potential for hitting the nonlinear OpAmp
operation mode (since there is only 1 OpAmp, instead of 4), which would yield a different
transfer function.

[1 bonus point]
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