MAE140 - Linear Circuits - Fall 11
 Midterm, October 27

Instructions

(i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a hand calculator with no communication capabilities
(ii) You have 70 minutes
(iii) Do not forget to write your name, student number, and instructor

Figure 1: Circuits for questions 1-3

1. Equivalent circuits

Part I: [2 points] Turn off all the sources in the circuit of Figure 1(a) and find the equivalent resistance as seen from terminals A and B.

Part II: [3 points] Find the Thévenin equivalent as seen from terminals A and B .
Hint: If you want, you can use the result obtained in Part I
Part III: [1 point] Find the power absorbed by a 40Ω resistor that is connected to terminals A and B.

Solution:

Part I: We start by switching off the sources.

We substitute the voltage source by a short circuit, and the current source by an open circuit. Then, we get the circuit on the right

[. 5 point]

Now we combine the two resistances in parallel on the left to get the circuit

[. 5 point]

The final equivalent resistance is given by

$$
R_{\mathrm{final}}=\frac{20 \cdot 20}{20+20}=10 \Omega
$$

(. 5 point)

Part II: From Part I, we can say that $R_{T}=10 \Omega$. The Thévenin voltage v_{T} is equal to the voltage v_{oc} across the 20Ω resistor.
(+ . 5 point)
To find the open-circuit voltage, a possible series of source transformations is shown here. We first transform the voltage source

$$
\text { (+ . } 5 \text { point) }
$$

This is equivalent to:

(+ . 25 point)
We transform the current source back to a voltage source, then sum the resistors of 5Ω that become in series:

The voltage source can be transformed now into a current source:
(+ . 5 point)

Summing the two current sources in parallel results into:

(+ . 25 point)
(+ . 25 point)
Applying a source transformation, reduces the circuit to:

(+ . 25 point)
Now we can compute $v_{\text {oc }}$ using a voltage division rule as:

$$
v_{T}=v_{\mathrm{oc}}=\frac{20}{10+10+20}(-20 \mathrm{~V})=-10 \mathrm{~V}
$$

(+ . 5 point)

Part III: We compute the voltage across the 40Ω resistor with the Thévenin equivalent as:

$$
v=\frac{40}{40+R_{T}} v_{T}=\frac{40}{50}(-10)=\frac{-40}{5}=-8 V
$$

Then, the power absorbed by a 40Ω resistor is $p=\frac{v^{2}}{40}=\frac{64}{40}=1.6 \mathrm{~W}$.

2. Node voltage analysis

[6 points] Formulate node-voltage equations for the circuit in Figure 1(b). Use the node labels A, B, C provided in the figure and clearly indicate how you handle the presence of a voltage source. The final equations must depend only on unknown node voltages or the value v_{S}. Do not modify the circuit or the labels. No need to solve any equations!

Solution: There are four nodes in this circuit and the ground node (D) is directly connected to the voltage source. Therefore, this helps us taking care of it by setting $v_{A}=v_{S}$.

$$
\text { (+ } 1.5 \text { point) }
$$

We need to derive equations for the other two unknown node voltages v_{B} and v_{C}.
KCL for node B is:

$$
\frac{v_{B}-v_{S}}{R_{1}}+\frac{v_{B}}{R_{2}}+\frac{v_{B}-v_{C}}{R_{3}}=g v_{2}
$$

(+ 1 point)
KCL for node C is:

$$
\frac{v_{C}-v_{B}}{R_{3}}+\frac{v_{C}}{R_{4}}=-g v_{2}
$$

(+ 1 point)
The current source $g v_{2}$ depends on the voltage v_{2} across R_{2}. Using the nodal variables, we see that

$$
v_{2}=v_{B}
$$

(+ 1.5 point)

Thus, we can rewrite the equations above as:

$$
\begin{aligned}
& \frac{v_{B}-v_{S}}{R_{1}}+\frac{v_{B}}{R_{2}}+\frac{v_{B}-v_{C}}{R_{3}}-g v_{B}=0 \\
& \frac{v_{C}-v_{B}}{R_{3}}+\frac{v_{C}}{R_{4}}+g v_{B}=0
\end{aligned}
$$

or, equivalently,

$$
\begin{align*}
& v_{B}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}-g\right)-\frac{v_{C}}{R_{3}}=\frac{v_{S}}{R_{1}} \\
& v_{C}\left(\frac{1}{R_{3}}+\frac{1}{R_{4}}\right)+v_{B}\left(-\frac{1}{R_{3}}+g\right)=0 \tag{+1point}
\end{align*}
$$

3. Mesh current analysis

[6 points] Formulate mesh-current equations for the circuit in Figure 1(b). Use the mesh currents shown in the figure and clearly indicate how you handle the presence of a dependent current source. The final equations should only depend on the unknown mesh currents and the source value v_{S}. Do not modify the circuit or the labels. Do not use any source transformation. No need to solve any equations!

Hint: Use a supermesh

Solution: KVL for mesh 1 becomes:

$$
\begin{equation*}
i_{1} R_{1}+\left(i_{1}-i_{3}\right) R_{2}=v_{S} \tag{+1point}
\end{equation*}
$$

Mesh 2 and Mesh 3 share a current source. We can deal with it defining a supermesh consisting of Mesh 2 and Mesh 3.

KVL for the supermesh reads like

$$
i_{2} R_{3}+i_{3} R_{4}+R_{2}\left(i_{3}-i_{1}\right)=0
$$

(+ 1 point)
and the current source imposes the constraint:

$$
\begin{equation*}
i_{2}-i_{3}=g v_{2} \tag{+1point}
\end{equation*}
$$

The value of the dependent source can be expressed in terms of mesh currents as

$$
\begin{equation*}
g v_{2}=g R_{2}\left(i_{1}-i_{3}\right) \tag{+1point}
\end{equation*}
$$

Finally, the equations can be rewritten as:

$$
\begin{aligned}
& i_{1}\left(R_{1}+R_{2}\right)-i_{3} R_{2}=v_{S} \\
& -R_{2} i_{1}+i_{2} R_{3}+i_{3}\left(R_{2}+R_{4}\right)=0
\end{aligned}
$$

$$
-g R_{2} i_{1}+i_{2}+i_{3}\left(g R_{2}-1\right)=0
$$

4. Bonus question

[1 point] If you were allowed to use source transformations in the circuit of Figure $1(b)$ and node C was the ground (instead of D), describe what would you do in Question 2 to take care of the voltage source using node voltage analysis. Do not write or solve any equations!

Solution: The voltage source is connected in series with resistor R_{1}. Applying an equivalent source transformation, we can replace the series connection of v_{S} and R_{1} with an independent current source $\frac{v_{S}}{R_{1}}$ connected in parallel with R_{1}. The current source can now be handled using nodal analysis. This transformation has the added advantage of eliminating node A.

