MAE140 - Linear Circuits - Fall 11
 Midterm, October 27

Instructions

(i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a hand calculator with no communication capabilities
(ii) You have 70 minutes
(iii) Do not forget to write your name, student number, and instructor

Figure 1: Circuits for questions 1-3

1. Equivalent circuits

Part I: [2 points] Turn off all the sources in the circuit of Figure 1(a) and find the equivalent resistance as seen from terminals A and B.
Part II: [3 points] Find the Thévenin equivalent as seen from terminals A and B. Hint: If you want, you can use the result obtained in Part I
Part III: [1 point] Find the power absorbed by a 40Ω resistor that is connected to terminals A and B.

2. Node voltage analysis

[6 points] Formulate node-voltage equations for the circuit in Figure 1(b). Use the node labels A, B, C provided in the figure and clearly indicate how you handle the presence of a voltage source. The final equations must depend only on unknown node voltages and the value v_{S}. Do not modify the circuit or the labels. No need to solve any equations!

3. Mesh current analysis

[6 points] Formulate mesh-current equations for the circuit in Figure 1(b). Use the mesh currents shown in the figure and clearly indicate how you handle the presence of a dependent current source. The final equations should only depend on the unknown mesh currents and the source value v_{S}. Do not modify the circuit or the labels. Do not use any source transformation. No need to solve any equations! Hint: Use a supermesh

4. Bonus question

[1 point] If you were allowed to use source transformations in the circuit of Figure 1(b) and node C was the ground (instead of D), describe what would you do in Question 2 to take care of the voltage source using node voltage analysis. Do not write or solve any equations!

