
MAE140 - Linear Circuits - Fall 13
Final, December 11

Instructions

(i) The exam is open book. You may use your class notes and textbook. You may use a hand calculator
with no communication capabilities

(ii) You have 180 minutes

(iii) Do not forget to write your name and student number

(iv) On the questions for which the answers are given, please provide detailed derivations

(v) The exam has 5 questions for a total of 50 points and 3 bonus points
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Figure 1: Circuit for Question 1.

1. Equivalent Circuits

Part I: [2 points] Assuming zero initial conditions, transform the circuit in Figure 1 into the s-domain.

Part II: [4 points] Find the impedance equivalent in the circuit obtained in Part I as seen from termi-
nals A and B. The answer should be given as a ratio of two polynomials.

Part III: [4 points] Use source transformations to find the s-domain Thévenin equivalent of the circuit
obtained in Part I as seen from terminals C and D.

Solution: Part I:

Since all initial conditions are zero, it is easy to
transform the circuit to the s-domain.

[2 points]
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Part II:

We need to go through the different combinations of
impedances carefully. Since we have to compute the
impedance equivalent as seen from terminals A and B,
we can assume open circuit conditions at terminals C
and D. Therefore, the two resistors and the inductor on
the right are all in series, so we get

[2 points]
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Now we combine the two admittances in parallel to get
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Finally, we combine the two impedances in series to get

Z(s) =
RCLs2 + (L+R2C)s+ 2R

LCs2 + 2RCs

[1 point]
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Part III:

We begin with a source transformation.

[.5 point]

R1/sC sL

R/2

R/2

C

D

sCV(s)
S

Page 2



Now, we combine the capacitor and the resistor in
parallel

[.5 point]

sL

R/2

R/2

C

D

sCV(s)
S

R

RCs+1

Next, we do a source transformation to turn the
current source into a voltage source
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We next combine the impedance and the two re-
sistors in series to get
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Now, we transform the voltage source again into
a current source
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We next combine the impedance and the inductor
in parallel to get

ZT (s) =
R2CLs2 + 2RLs

RCLs2 + (L+R2C)s+ 2R

[.5 point]
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Finally, we obtain the s-domain Thévenin equiva-
lent with one last source transformation

VT (s) =
RCLs2

RCLs2 + (L+R2C)s+ 2R
VS(s)

[.5 point]
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Figure 2: Nodal and Mesh Analysis Circuit

2. Nodal and Mesh Analysis

Part I: [5 points] Formulate node-voltage equations in the s-domain for the circuit in Figure 2. Use
the reference node and other labels as shown in the figure. Use the initial conditions indicated in
the figure and transform them into current sources. Make sure your final answer has the same
number of independent equations as unknown variables. No need to solve any equations!

Part II: [5 points] Formulate mesh-current equations in the s-domain for the circuit in Figure 2. Use
the currents shown in the figure. Use the initial conditions indicated in the figure and transform
them into voltage sources. Make sure your final answer has the same number of independent
equations as unknown variables. No need to solve any equations!

Part III: [1 bonus point] Express the transform IL(s) of the inductor current in terms of your unknown
variables of Part I and also in terms of your unknown variables of Part II.

Solution: Part I:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of respecting
the current orientation.

[.5 point for correct circuit; .5 point for correct initial conditions]

The voltage source poses a problem for nodal analysis. We can easily take care of it by realizing that
(method #2)

VA(s) = aVx(s), (1 point)

and not writing KCL for node A.

Then, we only need to write KCL node equations for nodes B and C. For node B, we have

sC VB(s) +
1

R
(VB(s)− VA(s)) +

1

R
(VB(s)− VC(s)) = 0 (1 point)

For node C, we have
1

sL
(VC(s)− VA(s)) +

1

R
(VC(s)− VB(s)) +

1

2R
VC(s) =

i0
s

(1 point)

Finally, because we have a dependent source, we need one more equation. This comes from realizing

Vx(s) = VC(s)− VB(s) (1 point)

This gives a total of 4 independent equations in 4 unknowns (VA(s), VB(s), VC(s), Vx(s)). Alterna-
tively, one can take this last equation and substitute it in the first one to arrive at 3 independent
equations in 3 unknowns (VA(s), VB(s), VC(s)).

Part II:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of respecting
the current orientation.

[.5 point for correct circuit; .5 point for correct initial conditions]

We need to write mesh equations for meshes 1, 2, 3. For mesh 1, we have

R(I1(s)− I2(s)) +R(I1(s)− I3(s)) + sLI1(s) = Li0 (1 point)

For mesh 2, we have

R(I2(s)− I1(s)) +
1

sC
(I2(s)− I3(s)) = aVx(s) (1 point)

For mesh 3, we have

1

sC
(I3(s)− I2(s)) +R(I3(s)− I1(s)) + 2RI3(s) = 0 (1 point)

Finally, because we have a dependent source, we need one more equation. This comes from realizing

Vx(s) = −RI3(s) (1 point)

This gives a total of 4 independent equations in 4 unknowns (I1(s), I2(s), I3(s), Vx(s)). Alternatively,
one can take this last equation and substitute it in the second one to arrive at 3 independent equations
in 3 unknowns (I1(s), I2(s), I3(s)).

Part III:

Page 7



We just need to be careful to not lose track of the transform of the inductor current. In the case of
Part I, because we use a current source to account for the initial condition, we actually have

IL(s) = i0/s+ (VA(s)− VC(s))/(sL) (.5 bonus point)

In the case of Part II, because we use a voltage source to account for the initial condition, we have

IL(s) = I1(s) (.5 bonus point)
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Figure 3: RC circuit for Laplace Analysis

3. Laplace Domain Circuit Analysis

Part I: [2 points] Consider the circuit depicted in Figure 3. The voltage source is constant. The switch
is kept in position A for a very long time. At t = 0 it is moved to position B. Show that the initial
capacitor voltage is given by

vC(0−) = 2V.

[Show your work]

Part II: [3 points] Use this initial condition to transform the circuit into the s-domain for t ≥ 0. Use
an equivalent model for the capacitor in which the initial condition appears as a voltage source.
Find the transfer function of the circuit.
[Show your work]

Part III: [5 points] Use domain circuit analysis and inverse Laplace transforms to show that the out-

put voltage vo(t) when C =
1

6
F , L = 1H , and R = 3Ω is

vo(t) = 9(e−t − e−3t)u(t).

Solution:

Part I:

To find the initial conditions, we substitute the capacitor by an open circuit.

[.5 point for correct circuit; .5 point for substituting capacitor by open circuit]
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Combining the two resistors in parallel, we get the circuit
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[.5 point]

Using voltage division, we find that

vC(0−) =
R

R+R
4 = 2V. (.5 point)

Part II:

We add one voltage source in series for the capacitor to take care of its initial condition, paying
special attention to the polarities.
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(1 point)
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The transfer function can be easily found by realizing that the circuit is the composition of a voltage
divider, a non-inverting op-amp, and a voltage divider. Thanks to the non-inverting op-amp, the
chain rule applies.

(1 point)

Given the above, the transfer function is simply

T (s) =
R

R+ sL
× 2R+R

R
× 2R

2R+ 1
sC

=
6R2Cs

(Ls+R)(2RCs+ 1)
(1 point)

Part III:

From our answer to Part II, the Laplace transform of the output voltage is

Vo(s) = T (s)
2

s
=

12R2C

(Ls+R)(2RCs+ 1)
(1 point)

Substituting the RLC values, we get

Vo(s) =
18

(s+ 3)(s+ 1)

To find the output voltage, we need to compute the inverse Laplace transform. Using partial frac-
tions, we set

Vo(s) =
k1
s+ 1

+
k2
s+ 3

(1 point)

You can use your preferred method to find k1 and k2. We use here the cover-up or residue method

k1 = lim
s→−1

(s+ 1)Vo(s) = lim
s→−1

18

s+ 3
= 9

k2 = lim
s→−3

(s+ 3)Vo(s) = lim
s→−3

18

s+ 1
= −9

Therefore, we have

Vo(s) =
9

s+ 1
− 9

s+ 3
(2 points)

The output voltage is then

vo(t) = 9(e−t − e−3t)u(t) (1 point)
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Figure 4: Frequency Response Analysis.

4. Frequency Response Analysis

Part I: [1 point] Assuming zero initial conditions, transform the circuit in Figure 4 into the s-domain.

Solution: Since all initial conditions are zero, there is no need to add an independent source
for the capacitors. Therefore, the circuit in the s-domain looks like
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[1 point]
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Part II: [3 points] Show that the transfer function from Vi(s) to Vo(s) is given by

T (s) =
Vo(s)

Vi(s)
=
−3Ls

5R+ Ls
.

[Show your work]
Hint: use node voltage analysis

Solution: Since we cannot recognize any of the basic building blocks of OpAmps, we resort to
nodal analysis. Nodal analysis at node A gives

1

R
(VA(s)− Vi(s)) +

1

R
(VA(s)− VB(s)) +

1

R
(VA(s)− VC(s)) +

1

R
(VA(s)− VD(s)) = 0

(.5 point)

Nodal analysis at node B gives

1

R
(VB(s)− VA(s)) +

1

R
VB(s) = 0 (.5 point)

Nodal analysis at node C gives

1

R
(VC(s)− VA(s)) +

1

sL
(VC(s)− VD(s)) = 0 (.5 point)

Nodal analysis at node D gives

1

R
(VD(s)− VA(s)) +

1

sL
(VD(s)− VC(s)) +

1

R
VD(s) +

1

R
(VD(s)− VE(s)) = 0 (.5 point)

Additionally, the ideal OpAmp conditions give

VB(s) = VC(s) (.5 point)

Finally, we have that Vo(s) = VE(s). (.5 point)
Solving the above system of equations, we get

Vo(s) =
−3Ls

5R+ Ls
Vi(s).

from which the answer follows.

Part III [4 points] Let R = 100 mΩ, L = 10 mH. Compute the gain and phase functions of T (s). What
are the DC gain and the∞-freq gain? What is the cut-off frequency ωc? Use these values to sketch
the magnitude of the frequency response of the circuit. Is this circuit a low-pass, high-pass, or
band-pass filter?
[Explain your answer]

Solution: If R = 100 mΩ, L = 10 mH, the transfer function takes the form

T (s) =
−3s

50 + s
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The frequency response is then the complex function

T (jω) =
−3jω

50 + jω
, ω ≥ 0

Its magnitude is the gain function,

|T (jω)| = 3ω

|50 + jω|
=

3ω√
2500 + ω2

(.5 point)

And its phase is

∠T (jω) = ∠(−3jω)− ∠(50 + jω) =
3π

2
− arctan

( ω
50

)
(.5 point)

At ω = 0, we obtain

|T (j0)| = 0, ∠T (j0) =
3π

2
(correct DC-gain gets .5 point)

At ω =∞, we obtain

|T (j∞)| = 3, ∠T (j∞) = π (correct∞-freq gain gets .5 point)

The cut-off frequency is defined by

|T (jωc)| =
Tmax√

2
=

3√
2
.

Solving for it, we find ωc = 50 rad/s. (.5 point)
With the values obtained above, you can sketch the magnitude of the frequency response as
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(only top plot required, the other one here for completeness) (.5 point)
This circuit is a high-pass filter. (1 point)
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Part IV [2 points] Using what you know about frequency response, compute the steady state re-
sponse vSSo (t) of this circuit when vi(t) = −2 cos(50t− π

4 ) using the same values of R and L as in
Part III.

Solution: To compute the steady-state response to the input vi(t) = −2 cos(50t− π
4 ), we use the

frequency response values for ω = 50. In this way,

vSSo (t) = −2 |T (j50)| cos
(

50t− π

4
+ ∠T (j50)

)
([1 point for correct expression])

= −2
3√
2

cos

(
50t− π

4
+

5π

4

)
= −3

√
2 cos (50t+ π) = 3

√
2 cos (50t)

(1 point for correct values [either of the last two answers is valid])

Part V: [2 bonus points] Design an inverting OpAmp circuit that has transfer function T (s). What
design would you recommend, your design or the one in Figure 4? Why?

Solution:
We can easily accomplish the same transfer function with an inverting OpAmp with an inductor
to generate Z2(s) and one inductor and one resistor in series to generate Z1(s). Something like
this

5R
v(t)
o

-

+

v(t)
i

L 3L

(1 bonus point)
Both this design and the one in Figure 3 have zero output impedance. The noninverting
OpAmp design seems preferable because of its simplicity and fewer number of components.

(1 bonus point)
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Figure 5: Circuit for Question 5. Stage 4 is the circuit of Question 4.

5. Chain Rule and Circuit Design

Consider the circuit in Figure 5 (note that stage 4 is the circuit of Question 4). You can assume zero
initial conditions.

Part I: [3 points] Redraw the circuit of Figure 5 in the s-domain and compute the transfer functions
T1(s), T2(s), T3(s), T4(s) of each one of the stages.

Solution: With no initial conditions, the circuit in the s-domain simply looks like

+

2RR

1/sC

V(s)
i

R 2R

stage 1 stage 2 stage 3 stage 4

R

R

V(s)o

R

R

+

sL

R

R

R

R

(1 point)
Stage 1 is a voltage divider, hence

T1(s) =
1/sC

R+ 1
sC

=
1

RCs+ 1
(.5 point)

Stage 2 is an inverting OpAmp, hence

T2(s) = −2R

R
= −2 (.5 point)
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Stage 3 is a voltage divider, hence

T3(s) =
R

R+ 2R
=

1

3
(.5 point)

Stage 4 is the circuit studied in Question 4, which has transfer function

T4(s) = − 3sL

5R+ sL
(.5 point)

Part II: [2 points] Somebody with a rusty recollection of linear circuits analyzed the circuit in Figure 5
and concluded that the transfer function T (s) from Vi(s) to Vo(s) is equal to the product of the
transfer functions

T̃ (s) = T1(s)× T2(s)× T3(s)× T4(s) =
1

RCs+ 1
(−2)

1

3

(
−3sL

5R+ sL

)
=

2sL

RCLs2 + (5R2C + L)s+ 5R

of the 4 stages depicted in the plot. Identify two problems that invalidate this conclusion.

Solution: The two problems with the conclusion is that

(i) stage 2 is loading stage 1, (1 point)

(ii) stage 4 is loading stage 3, (1 point)

and hence the chain rule does not apply. In both cases, there is current flowing through the
input resistors.

Part III: [2 points] Modify Figure 5, keeping all 4 stages but possibly re-ordering them, so that the
resulting circuit does have transfer function T̃ (s) by adding at most 1 OpAmp.
[Justify your answer]

Solution:
Given the two problems identified in Part II, the easiest way to do this would be by adding
two OpAmps in a voltage follower configuration, one between stages 1 and 2, and one between
stages 3 and 4. This would make the chain rule valid. However, this also requires 2 OpAmps,
and they ask us to only use 1 OpAmp. Therefore, we can only use one OpAmp in a voltage
follower configuration and we need to re-order the stages to make use of the fact that stage 4
has zero output impedance.

(1 point)
There are multiple ways to do this so that no stage i + 1 would load stage i. A possible design
is the following
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(1 point)

Part IV: [3 points] Use stage 1, a noninverting OpAmp, and a voltage divider to design a circuit
whose transfer function is T̃ (s).
[Provide reasons that justify how you arrived at your design]

Solution:
Stage 1 has transfer function 1/(RCs + 1). From Part II, the product T2(s) × T3(s) × T4(s)
simplifies to

(−2)
1

3

(
−3sL

5R+ sL

)
=

2sL

5R+ sL

We can also obtain this transfer function with a noninverting OpAmp with gain 2 and a voltage
divider involving an inductor L and a resistor 5R.

(1 point)
Additionally, if we put the noninverting OpAmp between stage 1 and the voltage divider in-
volving the inductor and the resistor, then there is no load from the OpAmp onto stage 1, or
from the voltage divider onto the OpAmp, and hence the chain rule applies.

(1 point)
Such a design would yield

C

+

R
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L

R

R
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i v(t)

o

(1 point)
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