s-Domain Circuit Analysis

Operate directly in the s-domain with capacitors,
inductors and resistors

Key feature — linearity is preserved
Ccts described by ODEs and their ICs
Order equals number of C plus number of L

Element-by-element and source transformation
Nodal or mesh analysis for s-domain cct variables
Solution via Inverse Laplace Transform
Why?
Easier than ODEs

Easier to perform engineering design
Frequency response ideas - filtering
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Element Transformations

Voltage source i(1
Time domain

V(1) =vy(t) ()
i(t) = depends on cct —
Transform domain

V(s) =V(s)=L(vs(t))
I(s) = £{(i(t)) depends on cct
Current source

I(s) =L(iy(1))
V(s) = £(v(t)) depends on cct <T> v(1)
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Element Transformations contd

@) =un @) < V(s)=ul(s)
n@)=pir(t) < Ii(s)=pl(s)
(@) =rip(t) < V(s)=ri(s)
N =g < Li(s)=gh(s)

Controlled sources

Short cct, open cct, OpAmp relations
vsc()=0 <= Vgc(s)=0
ioc()=0 < Ipc(s)=0
v (@) =vp(t) <= Vin(s)=Vp(s)
Sources and active devices behave identically
Constraints expressed between transformed variables

This all hinges on uniqueness of Laplace Transforms and
linearity
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Element Transformations contd

R Lic LA
Resistors v o= N
= . .
VR(#) = Rip(?) ip(?) = GVvR(?) L |

VR(s)=RIR(s)  IR(s)=GVR(s) |

Capacitors ZR(S) =R TYR(s)="
d 1t
ic(n=c ™Y re)= (fic@dr +1c0)

Ic(s)=sCVc(s)-Cvc(0-) Vel(s) = élC (5) + VCS(O)

Inductors Zo(s)=—=  Yp(s)=sC
vy (1) = L0 i (¢)=l}v (T)dt +i7 (0) e
L i L L) L L
1 ir,(0)

Vi(s)=sLI;(s)-Lif(0) Ip(s)= S_LVL(S) R
|

Zp(s)=sL  Yp(s)=—

sL 454
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Element Transformations contd

- _Ig(t)- 1g(s)
Resistor (5= RIns)
ve() <R Vols) %R
Capacitor ;
(s)
_iglt), +—[¢(S) = 1
- | _
= ¢ v o Wiy sC
S Vels)

Ic(s)=sCVce(s)~ Cve(07) VC(S)=é]C(S)+V%(O)

Note the source transformation rules apply!
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Element Transformations contd
InAUCLOrs y, (5)=s11,.(5)= Lip 0 11.(5)=—Vy(5)+
S S

I1(s)

- 1) ,
+ .
_il>( ) sL V,(s) % " i7,(0)
" Vi(s) | >
vi(t) )
; Li; (0)
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Example 10-1, T&R, 5th ed, p 456

RC cct behavior
Switch in place since t=-x, closed at t=0. Solve for v(t).

R L)
—W —|yy/y : |
l12(5)
—_C 11
V4 T "<_7 - T Cvc(0)

Initial conditions v (0)=V4
s-domain solution using nodal analysis
Ve(s V(s
1 =" )= ¢ <seree

e

t-domain solution via inverse Laplace transform

& Ve (1) = VAe%Cum
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Example 10-2 T&R 5th ed, p 457

Solve flg)r i(t)

V4
% QWS}% Vi (s)
U +
o QQ@D ’ #) Liy(0)

KVL around loop Y4 _(r+s0)i(s)+ Li; (0) =0
S

Solve "o V% (iL(O)‘V%)

+

i =
(s)= (s+%) s+% s+%
V., V, -Rt _Rt
Invert (1) = ?A-?Ae /L+iL(0)e /Lu(t) Amps
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Impedance and Admittance

Impedance (2) is the s-domain proportionality
factor relating the transform of the voltage across
a two-terminal element to the transform of the
current through the element with all initial

conditions zero
V(s)=Z(s)I(s)

Admittance (Y) is the s-domain proportionality
factor relating the transform of the current through
a two-terminal element to the transform of the
voltage across the element with initial conditions

ZEro I(s)= Y (s)V(s)
Impedance is like resistance
Admittance is like conductance
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Circuit Analysis in s-Domain

Basic rules

The equivalent impedance Z.,(s) of two impedances Z,(s)
and Z,(s) in series is Z,,(s) = Z1(s)+Z(s)

1(s)
Same current flows L
V(s)=Z1()I(s)+ Zo()I(5) = Zeg (s)1(s) V(s) Z,

The equivalent admittance Y, (s) of two admittances Y,(s)
and Y,(s) in parallel is Ye,(s) = Y1(s) + Y2 (s)

()
f

Same voltage
I(s) =NV (s)+ Yo (s)V (5) = You (s)V (5) Vi) Yy Y
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Example 10-3 T&R, 5th ed, p 461

Find Z,5(s) and then find V,(s) by voltage division
L

sL
T, @ )
vi(t) CD C = %R Vz_(t) VI(S)CD %: % R Vys)

B

I _RLCs*+Ls+R

1+SC RCs +1

R

Q

1
Zog(s)=sL +RHE = gL+

V1<s>=[ E }Vm
RLCs” +sL+ R

Z1(s)
Zeq (s)

Va(s) =

MAE140 Linear Circuits

178



Superposition in s-domain ccts

The s-domain response of a cct can be found as the
sum of two responses

1. The zero-input response caused by initial condition
sources, with all external inputs turned off

2. The zero-state response caused by the external sources,
with initial condition sources set to zero

Linearity and superposition

Another subdivision of responses
1. Natural response — the general solution
Response representing the natural modes (poles) of cct
2. Forced response - the particular solution
Response containing modes due to the input
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Example 10-6, T&R, 5th ed, p 466

The switch has been open for a long time and is closed
at t=0.

Find the zero-state and zero-input components of V(s)
Find v(t) for I,=1mA, L=2H, R=1.5KQ, C=1/6 uF

E | + +

I, L =—C o DL S DRer,

| : | -
I ]V
1 RLs Vas(5) = Zog (s) 2 = C

7T 1 T Res? .
sL. R RI 5
Vi (s)= Zeq (S)RCIA = ) 1 1
ST+ s+
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Example 10-6 contd

I IV +
_ A _ C
Vs (s) = Zeg (s) ¢ 51 i V)
re® e 4 . 1 c
RI 45 > D S T sC Dker,
V2i(9) = Zeg(IRCLy =—— 1 | i
RC T LC
Substitute values (5) = 6000 3 -3
N7 (5+1000)(s+3000)  s+1000 s+ 3000

v_ (1) = [3 10007 _ 36—3000t:| u(t)

1.5 075 225
VZi (S) = = +
(s +1000)(s + 3000)  s+1000 s+ 3000
vzi(0) = -0.75¢710%07 122567300 u(r)

What are the natural and forced responses?
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Example

Formulate node voltage equations in the s-domain

AN
C R,

II -

R]
o +
vz(t)CD C== R, v (1) <f>uvx(t) V(1)

R, ;
Vi (SJCD £=CD &% Ifx(s) +>M Vis) vy(s)

Clvé] (0) L G

SC2
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Example contd (—— R
® @ k"/ © il -
1 Coa LT
D) e T Rg% & §T>MVJS) Vi)

Cre 0 L Coveof0)

Node A: y,(s)=r(s) Node D: Vp(s) = uVx(s) = uvc(s)

Node B: VB(S)—VA(S)+VB(S)—VD(S)+ Ve (s)
Ry 1Y) !

L V) -V
1
Acz

Node C: —SC2VB (s)+ [SC2 + G3]Vc(S) = —CQVC2(O)

SCl
- CIVCI(O) - CZVCZ(O) =0
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Example

Find vo(t) when vg(t) is a unit step u(t) and v-(0)=0

A
R, C R, V(1)
VS(Q(D > 7
Convert to s-domain 1
Vis) o Vi(s) " Vo) R Vold)

Vs (S)CD Cvk(jO ) >
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Example

1

R sC
Vis)  ani Vi(s) " Ve(s) WD(S) 3
Nodal Analysis () © _ Vols)
Node A:V4(s) =Vg(s) TN Cve(0) >
Node D: Vp(s)=Vo(s) | =
Node C: Ve(s)=0 -
Node B:(G] +sC)WVp(s)-GVg(s)=Cvc(0)
Node C KCL: -sCVg(s)-GaV(s)=-Cvc(0)
Solve for Vy(s) " GC/
1
G R )
V,(s)=—-|——2|V,(s)=—|—%x V(s)
G, +sC R 1
+s k S+AIC_
R, y S 1 -R, y 1
T 1/ |s 1
Rostrels Bt Re

Invert LT
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Features of s-domain cct analysis

The response transform of a finite-dimensional,
lumped-parameter linear cct with input being a
sum of exponentials is a rational function and its
inverse Laplace Transform is a sum of exponentials

The exponential modes are given by the poles of the
response transform

Because the response is real, the poles are either
real or occur in complex conjugate pairs

The natural modes are the zeros of the cct
determinant and lead to the natural response

The forced poles are the poles of the input transform
and lead to the forced response
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Features of s-domain cct analysis

A cct is stable if all of its poles are located in the
open left half of the complex s-plane
A key property of a system
Stability: the natural response dies away as t—x
Bounded inputs yield bounded outputs

A cct composed of Rs, Cs and Ls will be at worst
marginally stable
With Rs in the right place it will be stable
Z(s) and Y(s) both have no poles in Re(s)>0

Impedances/admittances of RLC ccts are “Positive
Real” or energy dissipating
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