
MAE140 - Linear Circuits - Fall 14
Final, December 19

Instructions

(i) The exam is open book. You may use your class notes and textbook. You may use a hand
calculator with no communication capabilities

(ii) You have 180 minutes

(iii) Do not forget to write your name and student number

(iv) On the questions for which the answers are given, please provide detailed derivations

(v) The exam has 5 questions for a total of 50 points and 3 bonus points
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Figure 1: Circuit for Question 1.

1. Equivalent Circuits

Part I: [2 points] Assuming zero initial conditions, transform the circuit in Figure 1 into the s-domain.

Solution:

Since all initial conditions are zero, it is easy to
transform the circuit to the s-domain.

[2 points]
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Part II: [4 points] Find the impedance equivalent in the circuit obtained in Part I as seen from
terminals A and B . The answer should be given as a ratio of two polynomials.

Solution:

The three resistors on the right are in series when
seen from terminals A and B , so we get

[1 point]
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Now, we do source transformation with the depen-
dent source in parallel with the resistor to get
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By voltage division, we deduce that

Vx(s) =
1/(sC)

R+ 1/sC
(VS(s)− aRVx(s)) (1 point)

and solving for Vx(s), we obtain

Vx(s) =
1

1 +R(a+ Cs)
VS(s)

Therefore, the current through the capacitor is

Ix(s) = Vx(s)/(1/Cs) =
Cs

1 +R(a+ Cs)
VS(s)

Finally, the impedance equivalent as seen from terminals A and B is

ZAB = VS(s)/Ix(s) =
1 +R(a+ Cs)

Cs
(1 point)

Part III: [4 points] Find the s-domain Thévenin equivalent of the circuit obtained in Part I as seen
from terminals C and B .

Solution:
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We need to find VT and ZT . The three resistors
on the right are still in series when seen from
terminals C and B , so that we get

[.5 point]
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The Thévenin voltage is the open-circuit voltage at terminals C and B . From the picture, we
see that this corresponds to the voltage seen by the resistor R, which is

VT = −Vx(s) + VS(s) =
R(a+ Cs)

1 +R(a+ Cs)
VS(s) (.5 point)

(here, we have used the expression for VX(s) obtained in Part II).

To find the Thévenin impedance, we need to
compute the short-circuit current (turning off
sources is not an option because of the presence
of the dependent source)
[1 point]
The circuit then looks like the plot on the right

[.5 point]
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The two terminals of the resistor are connected
to the same node, so there is no voltage drop
across it, and we get

[.5 point]
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From the circuit, we see that Vx(s) = VS(s), and therefore, the current through the capacitor is

Ix(s) = sCVS(s)

KCL finally yields

Isc(s) = aVx(s) + Ix(s) = aVS(s) + sCVS(s) = (a+ sC)VS(s) (.5 point)

Therefore, the Thévenin impedance is

ZT (s) =
VT (s)

Isc(s)
=

R(a+Cs)
1+R(a+Cs)VS(s)

(a+ sC)VS(s)
=

R

1 +R(a+ Cs)

[.5 point]
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T
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Figure 2: Nodal and Mesh Analysis Circuit

2. Nodal and Mesh Analysis

Part I: [5 points] Formulate node-voltage equations in the s-domain for the circuit in Figure 2. Use
the reference node and other labels as shown in the figure. Use the initial conditions indicated in
the figure and transform them into current sources. Explain how you deal with the presence of the
dependent source. Make sure your final answer has the same number of independent equations
as unknown variables. No need to solve any equations!

Solution:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of
respecting the current orientation. Since the initial condition of the capacitor is zero, no need
to worry about adding a source for it.

[.5 point for correct circuit; .5 point for correct initial conditions]

We next write KCL node equations for nodes A , B and C . For node A , we have

1

R
(VA(s)− VB(s)) = −aVx(s) (1 point)

For node B , we have

1

R
(VB(s)− VA(s)) + sC VB(s) +

1

R
(VB(s)− VC(s)) +

1

sL
(VB(s)− VC(s)) = aVx(s)− i0

s
(1 point)

For node C , we have

1

sL
(VC(s)− VB(s)) +

1

R
(VC(s)− VB(s)) +

1

R
VC(s) =

i0
s

(1 point)

Finally, because we have a dependent source, we need one more equation. This comes from
realizing

Vx(s) = VB(s)− VC(s) (1 point)

This gives a total of 4 independent equations in 4 unknowns (VA(s), VB(s), VC(s), Vx(s)).
Alternatively, one can take this last equation and substitute it in the first one to arrive at 3
independent equations in 3 unknowns (VA(s), VB(s), VC(s)).
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Part II: [5 points] Formulate mesh-current equations in the s-domain for the circuit in Figure 2. Use
the currents shown in the figure. Use the initial conditions indicated in the figure and transform
them into voltage sources. Explain how you deal with the presence of the dependent source. Make
sure your final answer has the same number of independent equations as unknown variables. No
need to solve any equations!

Solution:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of
respecting the current orientation. Again, no need to worry about the initial condition of the
capacitor because it is zero.

[.5 point for correct circuit; .5 point for correct initial conditions]

For mesh-current analysis, the presence of the current source is a problem that must be dealt
with. In this case, since it only belongs to one mesh, we deal with it by simply setting

I1(s) = aVx(s) (1 point)

(this is method #2).

We need to write mesh equations for meshes 2 and 3. For mesh 2, we have

R(I2(s)− I3(s)) + sLI2(s) = Li0 (1 point)

For mesh 3, we have

1

sC
I3(s) +R(I3(s)− I2(s)) +RI3(s) = 0 (1 point)

Finally, because we have a dependent source, we need one more equation. This comes from
realizing

Vx(s) = R(I3(s)− I2(s)) (1 point)
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This gives a total of 4 independent equations in 4 unknowns (I1(s), I2(s), I3(s), Vx(s)). Al-
ternatively, one can take this last equation and substitute it in the second one to arrive at 3
independent equations in 3 unknowns (I1(s), I2(s), I3(s)).

Part III: [1 bonus point] Express the transform IL(s) of the inductor current in terms of your unknown
variables of Part I and also in terms of your unknown variables of Part II.

Solution:

We just need to be careful to not lose track of the transform of the inductor current. In the case
of Part I, because we use a current source to account for the initial condition, we actually have

IL(s) = i0/s+ (VB(s)− VC(s))/(sL) (.5 bonus point)

In the case of Part II, because we use a voltage source to account for the initial condition, we
have

IL(s) = I2(s) (.5 bonus point)
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Figure 3: RCL circuit for Laplace Analysis

3. Laplace Domain Circuit Analysis

Part I: [2 points] Consider the circuit depicted in Figure 3. The voltage source is constant. The
switch is kept in position A for a very long time. At t = 0 it is moved to position B. Show that
the initial capacitor voltage is given by

vC(0−) = −1V.

[Show your work]
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Solution: To find the initial conditions, we substitute the capacitor by an open circuit.

[.5 point for correct circuit; .5 point for substituting capacitor by open circuit]

C

R

R

2 volts 

Using voltage division, we find that

vC(0−) = − R

R+R
2 = −1V. (1 point)

Part II: [4 points] Use this initial condition to transform the circuit into the s-domain for t ≥ 0. Use
an equivalent model for the capacitor in which the initial condition appears as a voltage source.
Find the transfer function of the circuit.

[Show your work]

Solution: We add one voltage source in series for the capacitor to take care of its initial condi-
tion, paying special attention to the polarities.

-

+

1/sC

V(s)
o

R

R sL

1/s  

(1 point for correct circuit; 1 point for correct polarity)

The transfer function can be easily found by realizing that the circuit is the composition of a
voltage divider and a non-inverting op-amp. Thanks to the non-inverting op-amp, the chain rule
applies.

(1 point)

Given the above, the transfer function is simply

T (s) =
R

R+ 1
sC

× sL+R

R
=
Cs(sL+R)

RCs+ 1
(1 point)

Part III: [4 points] Use domain circuit analysis and inverse Laplace transforms to show that the
output voltage vo(t) when C = 1000µF , L = 1000µH, and R = 1 kΩ is

vo(t) = 10−6δ(t) + (1− 10−6)e−tu(t).
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Solution: From our answer to Part II, the Laplace transform of the output voltage is

Vo(s) = T (s)
1

s
=
C(sL+R)

RCs+ 1
(1 point)

Substituting the RLC values, we get

Vo(s) =
10−6s+ 1

s+ 1

Using long division, we can express this as

Vo(s) = 10−6 +
1− 10−6

s+ 1
(2 points)

The output voltage is then

vo(t) = 10−6δ(t) + (1− 10−6)e−tu(t) (1 point)
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Figure 4: Frequency Response Analysis.

4. Frequency Response Analysis

Part I: [1 point] Assuming zero initial conditions, transform the circuit in Figure 4 into the s-domain.

Solution: Since all initial conditions are zero, there is no need to add an independent source
for the capacitors. Therefore, the circuit in the s-domain looks like
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[1 point]

Part II: [3 points] Show that the transfer function from Vi(s) to Vo(s) is given by

T (s) =
Vo(s)

Vi(s)
=

R1R2C1C2s
2

R1R2C1C2s2 +R1(C1 + C2)s+ 1
.

[Show your work]

Hint: use node voltage analysis

Solution: Since we cannot recognize any of the basic building blocks of OpAmps, we resort to
nodal analysis. Right away, we see that VA = Vi(s) and VD = Vo(s). (1 point)

Therefore, we just need to write KCL equations for nodes B and C . Nodal analysis at node
B gives

sC1(VB(s)− VA(s)) + sC2(VB(s)− VC(s)) +
1

R1
(VB(s)− VD(s)) = 0 (.5 point)

Nodal analysis at node C gives

sC2(VC(s)− VB(s)) +
1

R2
VC(s) = 0 (.5 point)

Additionally, the ideal OpAmp conditions give

VC(s) = VD(s) (.5 point)

Solving the above system of equations, we get

Vo(s) =
R1R2C1C2s

2

R1R2C1C2s2 +R1(C1 + C2)s+ 1
Vi(s). (.5 point)

from which the answer follows.

Part III [4 points] Let R1 = R2 = 10 kΩ, C1 = C2 = 220 nF. Compute the gain and phase functions
of T (s). What are the DC gain and the∞-freq gain? What is the cut-off frequency ωc? Use these
values to sketch the magnitude of the frequency response of the circuit. Is this circuit a low-pass,
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high-pass, or band-pass filter?
[Explain your answer]

Solution: For R1 = R2 = 10 kΩ, C1 = C2 = 220 nF, the transfer function takes the form

T (s) =
484 ∗ 10−8s2

484 ∗ 10−8s2 + 440 ∗ 10−5s+ 1
=

s2

s2 + 440
484 ∗ 103s+ 1

484108

For convenience, we write as

T (s) =
s2

s2 + a1s+ a0

with a1 = 440
484 ∗ 103 and a0 = 1

484108.

The frequency response is then the complex function

T (jω) =
−ω2

−ω2 + a1jω + a0
, ω ≥ 0

Its magnitude is the gain function,

|T (jω)| = ω2√
(a0 − ω2)2 + a21ω

2
(.5 point)

And its phase is

∠T (jω) = ∠(−ω2)− ∠(a0 − ω2 + a1ωj) = π − arctan

(
a1ω

a0 − ω2

)
(.5 point)

At ω = 0, we obtain

|T (j0)| = 0, ∠T (j0) = π (correct DC-gain gets .5 point)

At ω =∞, we obtain

|T (j∞)| = 1, ∠T (j∞) = 0 (correct ∞-freq gain gets .5 point)

The cut-off frequency is defined by

|T (jωc)| =
Tmax√

2
=

1√
2
.

Solving for it, we find ωc = 706.26 rad/s. (.5 point)

With the values obtained above, you can sketch the magnitude of the frequency response as
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(only top plot required, the other one here for completeness) (.5 point)

This circuit is a high-pass filter. (1 point)

Part IV [2 points] Using what you know about frequency response, compute the steady state response
vSSo (t) of this circuit when vi(t) = 2 cos(706.26t− π

2 ) using the same values of R1, R2, C1, and C2

as in Part III.

Solution: To compute the steady-state response to the input vi(t) = 2 cos(706.26t− π
2 ), we use

the frequency response values for ωc = 706.26, |T (jωc)| = 1/
√

2 and ∠T (jωc) = 1.14372. In this
way,

vSSo (t) = 2 |T (j706.26)| cos
(

706.26t− π

2
+ ∠T (j706.26)

)
(1 point for correct expression)

= 2
1√
2

cos
(

706.26t− π

2
+ 1.14372

)
=
√

2 cos (706.26t− 0.427077)

(1 point for correct values)

5. Op-Amps and Loading

Consider the circuit in Figure 5

Part I: [3 points] Considering stage 1 and stage 2 separately, use nodal analysis to obtain the output
voltages vC and vD of the Op-amps in stage 1.

Solution: We only write KCL equations for nodes A and B , since nodes C and D are output
nodes of op-amps.

(.5 point)
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Figure 5: Circuit for Question 5.

KCL for node A takes the form

1

R1
(vA − vC) +

1

Rvar
(vA − vB) = 0 (.5 point)

KCL for node B takes the form

1

R1
(vB − vD) +

1

Rvar
(vB − vA) = 0 (.5 point)

Moreover, from the ideal op-amp equations, we have vA = v1 and vB = v2.

(.5 point)

Solving for vC and vD, we obtain

vC = v1 −
R1

Rvar
(v2 − v1) (.5 point)

vD = v2 +
R1

Rvar
(v2 − v1) (.5 point)

Part II: [2 points] Do you recognize stage 2 as any of the basic op-amp circuits? If so, specify which
one and provide an explicit expression for the output voltage vo.

Solution: Yes, stage 2, when viewed independently, is an inverting differential amplifier.

(1 point)

Accordingly, if we denote the input voltages to the second stage by vi,1 (top) and vi,2 (bottom),
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we obtain the expression for the output voltage

vo = −R3

R2
vi,1 +

R3

R2 +R3

R2 +R3

R2
vi,2 =

R3

R2
(vi,2 − vi,1) (1 point)

Part III: [2 points] Consider now the connection of stages 1 and 2 depicted in Figure 5. Is there
loading? Justify your answer.

Solution: There is no loading because the output impedance of the op-amps on the left is zero.
So even if there is still current flowing through the R2 resistors, the voltages vC and vD do not
change when the two stages are connected.

(2 points)

Part IV: [1 point] For the circuit in Figure 5, show that the output voltage vo as a function of the
input voltages v1 and v2 is

vo(t) =
R3

R2

(
1 +

2R1

Rvar

)
(v2(t)− v1(t))

[Justify your work]

[Hint: use your answer to Part III]

Solution: Given that there is no loading (cf. Part III), we can simply combine our answers to
Parts I and II to obtain

vo(t) =
R3

R2
(vi,2 − vi,1) =

R3

R2
(vD − vC)

=
R3

R2

(
v2(t) +

R1

Rvar
(v2(t)− v1(t))− v1(t) +

R1

Rvar
(v2(t)− v1(t))

)
=
R3

R2

(
1 +

2R1

Rvar

)
(v2(t)− v1(t))

(1 point)

Part V: [2 points] Consider the case when Rvar is removed and substituted by an open circuit. How
would you describe stage 1 then? What would the expression for the output voltage vo in this
case?

Solution: When Rvar is removed and substituted by an open circuit, the circuit looks like
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In this case, stage 1 just looks like two (independent) unity-gain voltage followers. (1 point)

The output voltage can be readily obtained from Part IV by substituting Rvar =∞,

vo(t) =
R3

R2
(v2(t)− v1(t)) (1 point)

Part VI: [2 bonus points] The circuit is called instrumentation amplifier. To compute the difference
between the voltages produced by two different instruments, it would seem that simply using
stage 2 would do. Do you agree with this? What do you think the role of stage 1 is? Finally, can
you explain what the role of Rvar is in this design?

Solution: Using just stage 2 with two different instruments connected directly to a differential
amplifier is not a good idea, because in general there would be loading, and hence the output
voltages of the instruments (which are the things we want to compute the difference of in the
first place) would be changed when connected. Preventing this is precisely the role of stage 1.
The top and bottom op-amps have infinite input impedance, and hence the circuit in Figure 5
will not load the instruments.

(1 extra point)

This whole effect could be achieved without the resistor Rvar (as we discussed in Part V).
However, the inclusion of this resistor is convenient to further amplify the difference between
the two instrument voltages, as can be seen in the expression for the output voltage obtained in
Part IV. (1 extra point)
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