MAE 140 fall 2014 Homework 1 solution

1.12 1.17 1.23 2.2 2.5 2.10 2.13 2.17 2.24 2.27

[1.12] given: $q(t) = 1 - e^{-1000t} \mu C$ Question: How long will it take the current to reach 200 µA?

$$i = \frac{dq}{dt} = \frac{d}{dt} \left(1 - e^{-1000t} \right) = 1000e^{-1000t} = 200$$

$$e^{-1000t} = \frac{1}{5}$$
Using $q^{N} = b \iff \log_{a} b = N$ we obtain
$$-1000t = \log_{e} \frac{1}{5}$$

$$-1000t = \ln \frac{1}{5}$$

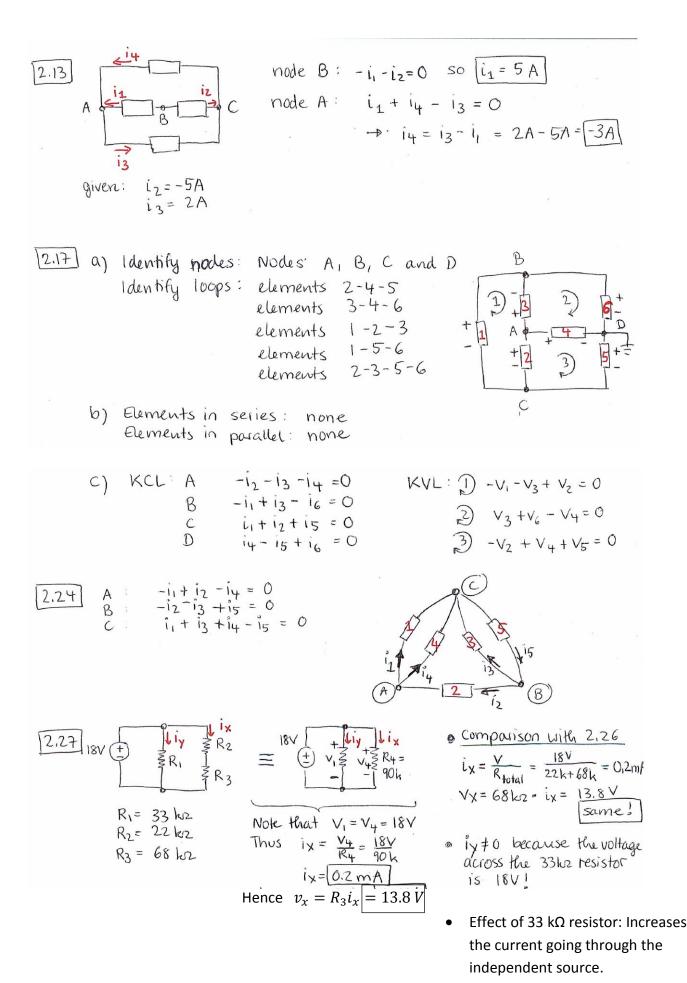
$$t = -\frac{\ln \frac{1}{5}}{1000} = 0.0016 \text{ s}$$

1.17

given: $i = e^{V} - 10A$ (photocell) For V = -2, 2 and 3 find the device power and state whether or not it is absorbing or delivering power

$\rho = i \vee$			
for $v = -2$:	$p = (e^{(-2)} - 10)(-2) = p = (e^{(+2)} - 10) \cdot 2 = p = (e^{(+3)} - 10) \cdot 3 = p$	19.73 W	ab sorbing
for $v = 2$:		- 5.22 W	delivering
for $v = 3$:		30.26 W	absorbing

2.5 given:
$$V = 15V$$
; $P_{x} = 25 \text{ mW}$
 $P = Vi = \frac{V^{2}}{R}$ $\rightarrow R_{x} = \frac{V^{2}}{P_{x}} = \frac{15^{2}V^{2}}{0.025 \text{ VA}} = 9 \text{ ks}$


$$p = vi = \frac{v^2}{R} \rightarrow R = \frac{v^2}{p}$$

Substituting $v = v_{max} = 500V$ and $p = p_{max} = 0.25$ W we obtain

$$R = \frac{500^2}{0.25} \frac{V^2}{VA} = 10^6 \frac{V}{A} = 1 M\Omega$$

Since $R \sim v$ and $R \sim \frac{1}{p}$ it follows that

- Voltage is the limiting factor for $R > 10^6 \Omega$
- Power is the limiting factor for $R < 10^6 \Omega$

