
MAE140 - Linear Circuits - Winter 16
Final, March 16, 2016

Instructions

(i) The exam is open book. You may use your class notes and textbook. You may use a hand
calculator with no communication capabilities.

(ii) You have 180 minutes

(iii) Do not forget to write your name and student number

(iv) On the questions for which the answers are given, please provide detailed derivations

(v) The exam has 5 questions for a total of 50 points and 2 bonus points

Good luck!
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Figure 1: Circuit for Question 1.

1. Equivalent Circuits

Part I: [2 points] Assuming zero initial conditions, transform the circuit in Figure 1 into the s-domain.

Solution:

Since all initial conditions are zero, it is easy to
transform the circuit to the s-domain.

(2 points)
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Part II: [4 points] Find the open-circuit voltage in the circuit obtained in Part I (as seen from termi-
nals A and B ). Be mindful of the presence of the dependent source.

Solution:

Both current sources are in parallel with
impedances, so we use source transformation
twice to get the circuit on the right

(1 point)
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The open-circuit voltage VAB(s) is exactly the voltage drop seen by the vertical impedance R.
By voltage division, we deduce that

VAB(s) =
R

3R+ sL
(sLIS(s)− aRVx(s)) (1 point)

We need to determine what the value of Vx(s) is (i.e., we need to handle the dependent source).
This is in fact easy to do by noting that, by voltage division,

Vx(s) =
R

3R+ sL
(sLIS(s)− aRVx(s)) (1 point)

(In fact, Vx(s) = VAB(s)). Solving for Vx, we obtain

Vx(s) =
sRL

3R+ aR2 + sL
IS(s)

Therefore, the open-circuit voltage is

VAB(s) =
sRL

3R+ aR2 + sL
IS(s) (1 point)

Part III: [4 points] Find the s-domain Thévenin equivalent of the circuit obtained in Part I as seen
from terminals A and B . Be mindful of the presence of the dependent source.

Solution:

We need to find VT and ZT . It turns out that we computed the open-circuit voltage in Part II,
so in fact we know that

VT (s) =
sRL

3R+ aR2 + sL
IS(s) (.5 point)

To find the Thévenin impedance, we need to compute the short-circuit current (turning off
sources is not an option because of the presence of the dependent source)

(.5 point)
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The circuit then looks like the plot on the right

(.5 point)
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The same source transformations as we did in
Part II get us the equivalent circuit on the right
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Since the vertical impedance R is in parallel with
a short circuit, it does not play any role (no cur-
rent flows through it). Therefore, we are actu-
ally dealing with

(.5 point)
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Therefore, the short-circuit current can be expressed as

Isc(s) =
sLIS(s)− aRVx(s)

2R+ sL
(.5 point)

As before, we need to determine Vx (i.e., handle the presence of the dependent source). From
the circuit, and using voltage division, we see that

Vx(s) =
R

2R+ sL
(sLIS(s)− aRVx(s)) (1 point)

Solving for Vx, we obtain

Vx(s) =
sRL

2R+ aR2 + sL
IS(s)

Therefore, the short-circuit current is

Isc(s) =
sLIS(s)− aRVx(s)

2R+ sL
=

sL

2R+ aR2 + sL
IS(s)
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Finally, the Thévenin impedance is

ZT (s) =
VT (s)

Isc(s)
=
R(2R+ aR2 + sL)

3R+ aR2 + sL

(.5 point)
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Figure 2: Nodal and Mesh Analysis Circuit for Question 2.

2. Nodal and Mesh Analysis

Part I: [5 points] Formulate node-voltage equations in the s-domain for the circuit in Figure 2. Use
the reference node and other labels as shown in the figure. Use the initial conditions indicated
in the figure and transform them into current sources. Make sure your final answer has the same
number of independent equations as unknown variables. No need to solve any equations!

Solution:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of
respecting the polarity of the capacitor. Since the initial condition of the inductor is zero, no
need to worry about adding a source for it.

(1 point for correct circuit; 1 point for correct initial condition)

For nodal analysis, the presence of the voltage source poses a problem. However, the choice of
ground provides a solution for it. In fact, we have VD = 0 and

VA(s) = VS(s) (1 point)

(this is method #2).

We next write KCL node equations for nodes B and C . For convenience, we use the shorthand
notation G1 = 1/R1 and G2 = 1/R2. For node B , we have

sC(VB(s)− VA(s)) +G2VB(s) = −Cvi − IS(s) (1 point)

For node C , we have

G1(VC(s)− VA(s)) +
1

sL
VC(s) = IS(s) (1 point)

This gives a total of 3 independent equations in 3 unknowns (VA(s), VB(s), VC(s)). Alternatively,
one can take the expression for VA(s) and substitute it in the other equations to arrive at 2
independent equations in 2 unknowns (VB(s), VC(s)).

Part II: [5 points] Formulate mesh-current equations in the s-domain for the circuit in Figure 2. Use
the currents shown in the figure. Use the initial conditions indicated in the figure and transform
them into voltage sources. Make sure your final answer has the same number of independent
equations as unknown variables. No need to solve any equations!

Solution:
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In the above figure, we have transformed the circuit into the s-domain, taking good care of
respecting the polarity of the capacitor. Again, no need to worry about the initial condition of
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the inductor because it is zero.

(1 point for correct circuit; 1 point for correct initial condition)

For mesh-current analysis, the presence of the current source is a problem that must be dealt
with. In this case, we need to use a supermesh (because the current source is not in parallel
with an impedance and because it belongs to more than one mesh). Therefore, we set

I3(s)− I1(s) = IS(s) (1 point)

(this is method #3).

KVL for the supermesh looks like

R1I1(s) + sLI3(s) +R2(I3(s)− I2(s)) +
1

sC
(I1(s)− I2(s))−

vi
s

= 0 (1 point)

For mesh 2, KVL takes the form

R2(I2(s)− I3(s))− VS(s) +
1

sC
(I2(s)− I1(s)) +

vi
s

= 0 (1 point)

This gives a total of 3 independent equations in 3 unknowns (I1(s), I2(s), I3(s)).

Part III: [1 bonus point] Express the transform of the capacitor voltage in terms of your unknown
variables of Part I and also in terms of your unknown variables of Part II.

Solution:

We just need to be careful to not lose track of the transform of the capacitor voltage. In the
case of Part I, because we use a current source to account for the initial condition, we have

Vcapacitor(s) = VA(s)− VB(s) (.5 bonus point)

In the case of Part II, because we use a voltage source to account for the initial condition, we
actually have

Vcapacitor(s) =
1

sC
(I2(s)− I1(s)) +

vi
s

(.5 bonus point)
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Figure 3: RCL circuit for Laplace Analysis for Question 3.

3. Laplace Domain Circuit Analysis

Part I: [2 points] Consider the circuit depicted in Figure 3. The value vA of the voltage source at the
top is constant. The switch is kept in position A for a very long time. At t = 0 it is moved to
position B. Show that the initial condition for the inductor is given by

iL(0−) = −vA
R
.

[Show your work]

Solution: To find the initial condition, we substitute the inductor by a short circuit.

[1 point for correct circuit; 1 point for substituting inductor by short circuit]

AR/2 R/2

v 
A

L

Therefore, we deduce that

iL(0−) = −vA
R

Part II: [4 points] Use this initial condition to transform the circuit into the s-domain for t ≥ 0. Use
an equivalent model for the inductor in which the initial condition appears as a voltage source.
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Do you recognize the resulting circuit as one of the basic op-amp building blocks? Express the
output response transform Vo(s) as a function of Vi(s) and vA.

Solution: We add one voltage source in series for the inductor to take care of its initial condition,
paying special attention to the direction of the current. No need to worry about the initial
condition of the capacitor because it is zero.
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(1 point for correct circuit; 1 point for correct polarity)

We recognize this circuit as one of the basic op-amp building blocks. In fact, this is a differential
amplifier.

(1 point)

Given the above, the output response transform is

Vo(s) =
1/sC

1/sC +R

3R/2 + sL

R/2 + sL
Vi(s)−

R

R/2 + sL

L

R
vA

=
3R+ 2Ls

(1 +RCs)(R+ 2Ls)
Vi(s)−

2L

R+ 2Ls
vA (1 point)

Part III: [4 points] Use partial fractions and inverse Laplace transforms to show that the output
voltage vo(t) when vA = 1V , vi(t) = e−1500tu(t)V , C = 1 mF , L = 1 mH, and R = 1 Ω is

vo(t) = (e−500t − 2e−1000t)u(t).

Solution: From our answer to Part II, and substituting the values for the impedances and the
sources, the Laplace transform of the output voltage is

Vo(s) =
3 + 2 · 10−3s

(1 + 10−3s)(1 + 2 · 10−3s)

1

s+ 1500
− 1

500 + s

=
1000

(1000 + s)(500 + s)
− 1

500 + s
(1 point)

Using partial fractions, we get

Vo(s) =
A

1000 + s
+

B

500 + s
− 1

500 + s
(1 point)
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Using the residue method to compute A and B, we obtain

Vo(s) = − 2

1000 + s
+

2

500 + s
− 1

500 + s
= − 2

1000 + s
+

1

500 + s
(1 point)

The output voltage is then

vo(t) = (e−500t − 2e−1000t)u(t) (1 point)
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Figure 4: Frequency Response Analysis for Question 4.

4. Frequency Response Analysis

Part I: [1 point] Assuming zero initial conditions, transform the circuit in Figure 4 into the s-domain.

Solution: Since all initial conditions are zero, there is no need to add an independent source
for the capacitors. Therefore, the circuit in the s-domain looks like

-

+

V(s)
i

1/sC
1

R

o
V(s)

21/sC

(1 point)

Part II: [2 points] Show that the transfer function from Vi(s) to Vo(s) is given by

T (s) =
Vo(s)

Vi(s)
= − RC1s

1 +RC2s
.

[Show your work]
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Solution: This is clearly an inverting op-amp. (1 point)

Therefore the output response transform can be expressed as

Vo(s) = −R||1/sC2

1/sC1
Vi(s) = − RC1s

1 +RC2s
Vi(s). (1 point)

from which the answer follows.

Part III [5.5 points] Let R = 1 kΩ, C1 = 20µF and C2 = 1µF. Compute the gain and phase functions
of T (s). What are the DC gain and the ∞-freq gain? What are the corresponding values of the
phase function? What is the cut-off frequency ωc and its phase? Sketch plots for the gain and
phase functions. What type of filter is this one?
[Explain your answer]

Solution: For the given values of R, C1 and C2, the transfer function takes the form

T (s) = −20 · 10−3s

1 + 10−3s
= − 20s

1000 + s

The frequency response is then the complex function

T (jω) =
−20jω

1000 + jω
, ω ≥ 0

Its magnitude is the gain function,

|T (jω)| = | − 20jω|
|1000 + jω|

=
20ω√

106 + ω2
(.5 point)

And its phase is

∠T (jω) = ∠(−20jω)− ∠(1000 + jω) =
3π

2
− arctan

( ω

1000

)
(.5 point)

At ω = 0, we obtain

|T (j0)| = 0, ∠T (j0) =
3π

2
rad

(correct DC-gain gets .5 point, correct phase gets .5 point)

At ω =∞, we obtain

|T (j∞)| = 20, ∠T (j∞) = π rad
(correct ∞-freq gain gets .5 point, correct phase gets .5 point)

The cut-off frequency is defined by

|T (jωc)| =
Tmax√

2
=

20√
2
.

Solving for it, we find ωc = 1000 rad/s. (.5 point)

The phase at ωc is ∠T (j1000) = 5π
4 rad. (.5 point)

With the values obtained above, you can sketch the magnitude of the frequency response as
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This circuit is a high-pass filter. (.5 point)

Part IV [1.5 points] Using what you know about frequency response, compute the steady state re-
sponse vSSo (t) of this circuit when vi(t) = 1

4 cos(500t+ π
4 ) using the same values of R, C1, and C2

as in Part III.

Solution: To compute the steady-state response to the input vi(t) = 1
4 cos(500t + π

4 ), we use
the frequency response values for ω = 500,

|T (j500)| = 4
√

5

∠T (j500) =
3π

2
− arctan

(1

2

)
' 4.24874 rad.

Therefore,

vSSo (t) =
1

4
|T (j500)| cos

(
500t+

π

4
+ ∠T (j500)

)
(1 point for correct expression)

=
√

5 cos (500t+ 5.0314) (.5 point for correct values)
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Figure 5: Circuit for Question 5.

5. Loading and the Chain Rule

Consider the circuit in Figure 5.

Part I: [2 points] Assuming zero initial conditions, plot the circuit in the s-domain. Find the transfer
function T (s) and determine its poles and zeros assuming R > 2

√
L/C.

Solution:

Since there are no initial conditions to take care
of, the circuit in the s-domain looks like

(.5 point)

R

1/sC

sL

V(s)
i o

V(s)

We can easily determine the transfer function by using voltage division.

T (s) =
Vo(s)

Vi(s)
=

1
sC

1
sC +R+ sL

=
1

1 +RCs+ LCs2
(.5 point)

There are no finite zeros. The transfer function has two zeros at s =∞. (.5 point)

The poles are of T are

p1 =
−RC +

√
(RC)2 − 4LC

2LC
, p2 =

−RC −
√

(RC)2 − 4LC

2LC
. (.5 point)

Since R > 2
√
L/C, both poles are real and negative.

Part II: [3 points] A student with a rusty recollection of MAE140 connected two identical copies of
this circuit in series and was surprised to observe that the transfer function of the resulting circuit
is not T (s) · T (s) = T (s)2. Could you explain to him why this is so and suggest an easy way
to solve the problem so that he obtains T (s)2 as the transfer function of the resulting circuit?
Properly justify your answer.

Solution: The problem is loading. If we connect two exact copies of the circuit in Figure 5 in
series, stage 2 will draw current from stage 1, and load it, invalidating the chain rule.

(1 point)
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An easy way to solve the prob-
lem is to add a voltage follower
in between the two copies of the
circuit in Figure 5, as depicted on
the right. (1 point)
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The infinite input impedance of the op-amp avoids loading stage 1. The zero output impedance
of the op-amp avoids stage 3 loading stage 2. Therefore, the chain rule applies. Since the transfer
function of the voltage follower is 1, the overall transfer function is T (s) · 1 · T (s) = T (s)2.

(1 point)

Part III: [2 points] We could help the student of Part II even further by designing a different circuit
with the same transfer function that does not have the same problem. To make the computations
concrete, let R = 100 Ω, C = 10 µF and L = 5 mH, and compute the corresponding numerical
values for the poles of the transfer function T (s). Next, write T (s) as a product of the form

T (s) =
−A
s+ α

· −B
s+ β

and determine appropriate values for A > 0, B > 0, α > 0, and β > 0.

Solution: With the values of R, C, and L, the transfer function can be written as

T (s) =
1

1 + 10−3s+ 5 · 10−8s2
=

2 · 107

2 · 107 + 2 · 104s+ s2

The poles are then

p1 = 104(−1 +
√
.8) ' −1055.73, p2 = 104(−1−

√
.8) ' −18944.3 (1 point)

Therefore, 2 · 107 + 2 · 104s + s2 = (s − p1)(s − p2). We use this information to factorize the
denominator of the transfer function as

T (s) =
−A
s− p1

· −B
s− p2

So we choose α = −p1 and β = −p2. Any A and B whose product is 2 · 107 will do, for instance,
A = 20000 and B = 1000. (1 point)

Part IV: [3 points] Design an inverting op-amp circuit whose transfer function is −A
s+α and another

inverting op-amp circuit whose transfer function is −B
s+β , with the numerical values for A,B, α, β

you chose in Part III. What is the transfer function of the series connection of these two inverting
op-amps?

Solution: There are several ways to do this. For instance, to get −A
s+α , we use an inductor and

two resistors together with the op-amp, like this
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RL R
1 2

with R1 = α Ohms, R2 = A Ohms, and L = 1 H. (1 point)

To get −B
s+β = −B/s

1+β/s , we change our design and use two capacitors and one resistor together with
the op-amp, like this

-

+

CC R
1 2

with R = 1 Ohms, C1 = 1/β F, and C2 = 1/B F. (1 point)

The transfer function of the series connection of the two inverting op-amps is the product of
both (there is no loading since stage 2 is connected to the output of an op-amp in stage 1), which
is precisely T (s)! (1 point)

Part V: [1 bonus point] Let us call circuit “B” the series connection of the two inverting op-amps
that you obtained in Part IV. Would the student with the rusty recollection of MAE140 have the
same problem he had in Part II if he were to connect two identical copies of circuit “B” in series?
Why?

Solution: No, he would not, because the zero output impedance of the op-amp avoids loading.
So if the student connected two identical copies of circuit “B” in series, he would obtain a circuit
whose transfer function is in fact T (s) · T (s) = T (s)2, as he originally intended. (1 point)
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