MAE140 - Linear Circuits - Winter 18

Final, March 20, 2018

Instructions

(i) The exam is open book. You may use your class notes and textbook. You may use a hand calculator with no communication capabilities.
(ii) You have 180 minutes
(iii) Do not forget to write your name and student number
(iv) On the questions for which the answers are given, please provide detailed derivations
(v) The exam has 6 questions for a total of 60 points and 3 bonus points

Good luck!

Figure 1: Circuit for Question 1.

1. Equivalent Circuits

All impedances should be given as a ratio of two polynomials.
Part I: [1 point] Assuming zero initial conditions, transform the circuit in Figure 1 into the s-domain.
Part II: [3 points] For the circuit you obtained in Part I, find the equivalent impedance as seen from terminals (A) and (B).
Part III: [3 points] For the circuit you obtained in Part I, find the equivalent impedance as seen from terminals (A) and (C).
Part IV: [3 points] For the circuit you obtained in Part I, find the equivalent impedance as seen from terminals (B) and (C).

Figure 2: Nodal and Mesh Analysis Circuit for Question 2. a is a positive constant.

2. Nodal and Mesh Analysis

Part I: [5 points] Convert the circuit in Figure 2 to the s-domain and formulate its node-voltage equations. Use the reference node and other labels as shown in the figure. Do not assume zero initial conditions. Make sure your final answer has the same number of independent equations as unknown variables (notice the presence of the dependent source). No need to solve any equations!
Part II: [5 points] Convert the circuit in Figure 2 to the s-domain and formulate its mesh-current equations. Use the mesh currents shown in the figure. Do not assume zero initial conditions. Make sure your final answer has the same number of independent equations as unknown variables (notice the presence of the dependent source). No need to solve any equations!
Part III: [1 bonus point] Express the transform of the capacitor voltage using your unknown variables of Part I. Also, express the transform of the capacitor voltage using your unknown variables of Part II.

Figure 3: RCL circuit for Laplace Analysis for Question 3.

3. Laplace Domain Circuit Analysis

Part I: [2 points] Consider the circuit depicted in Figure 3. The value i_{A} of the current source is constant. The initial condition of the inductor is zero. The switch is kept in position \mathbf{A} for a very long time. At $t=0$, it is moved to position \mathbf{B}. Show that the initial condition for the capacitor is given by

$$
v_{C}\left(0^{-}\right)=-R i_{A} .
$$

[Show your work]
Part II: [4 points] Use this initial condition to transform the circuit into the s-domain for $t \geq 0$. Use an equivalent model for the capacitor in which the initial condition appears as a current source. Use nodal analysis to express the output response transform $V_{o}(s)$ as a function of $V_{i}(s)$ and i_{A}.
Part III: [2 points] Use partial fractions and inverse Laplace transforms to show that the output voltage $v_{o}(t)$ when $i_{A}=1 \mathrm{~A}, v_{i}(t)=\cos (3 t) u(t) V, C=10 \mathrm{mF}, L=100 \mathrm{mH}$, and $R=1 \mathrm{Ohms}$ is

$$
v_{o}(t)=\left(\cos (3 t)+\frac{10}{3} \sin (3 t)+1+10 t\right) u(t) .
$$

Part IV: [2 points] Decompose the output voltage of Part III as (i) the sum of the natural and forced response, and (ii) the sum of the zero-state and zero-input response.

Figure 4: Frequency Response Analysis for Question 4.

4. Frequency Response Analysis

Part I: [1 point] Assuming zero initial conditions, transform the circuit in Figure 4 into the s-domain.
Part II: [3 points] Show that the transfer function from $V_{i}(s)$ to $V_{o}(s)$ is given by

$$
T(s)=\frac{V_{o}(s)}{V_{i}(s)}=-\frac{R_{2} C_{1} s}{R_{2} C_{2} s+1}-\frac{R_{3}}{R_{1}} \frac{1}{R_{3} C_{3} s+1}
$$

[Show your work]
Part III [5 points] Let $R_{1}=R_{2}=R_{3}=100 \mathrm{Ohms}, C_{1}=C_{2}=10 \mu \mathrm{~F}$ and $C_{3}=100 \mu \mathrm{~F}$. Compute the gain and phase functions of $T(s)$. What are the DC gain and the ∞-freq gain? What are the corresponding values of the phase function? What are the cut-off frequencies? Sketch plots for the gain and phase functions. What type of filter is this one? [Explain your answer]
Part IV [1 point] Using what you know about frequency response, compute the steady-state response $v_{o}^{S S}(t)$ of this circuit when $v_{i}(t)=\cos \left(500 t+\frac{\pi}{2}\right)$ using the same values of $R_{1}, R_{2}, R_{3}, C_{1}, C_{2}$, and C_{3} as in Part III.

Figure 5: Circuits for Question 5.

5. Loading and the Chain Rule

A former instructor of MAE140 was given the task of designing a circuit with the following transfer function

$$
T(s)=\frac{1000 s}{s^{2}+1100 s+10^{5}}
$$

Part I: [2 points] He first decomposed the transfer function as follows

$$
T(s)=\left(\frac{s}{s+100}\right)\left(\frac{1000}{s+1000}\right)
$$

and came up with a design that combines in series two voltage dividers, see Figure 5(a). Compute the transfer function of each voltage divider and show that their product is equal to $T(s)$.
Part II: [3 points] When he connected the two stages in series and used the input $v_{i}(t)=\cos (500 t)$, he was surprised to observe that the steady-state output was not $v_{o}^{S S}(t)=\sqrt{\frac{10}{13}} \cos (500 t-0.2662)$, as he was expecting. Can you explain why he was expecting that response and why he did not get it? Properly justify your answer.
Part III: [1 point] Could you fix the design provided by the instructor, still employing his two voltage dividers and possibly using one op-amp, so that he gets the steady-state output he was aiming for? Explain how.
Part IV: [3 points] The instructor could not figure out why his design with voltage dividers was not working, so he abandoned it. He decomposed again the transfer function, this time as follows

$$
T(s)=\left(\frac{-1000}{s+1000}\right)\left(\frac{-s}{s+100}\right)
$$

and came up with a design that combines in series the two stages in Figure 5(b). Compute the transfer function of each stage and show that their product is equal to $T(s)$.
Part V: [1 point] If he connects in series the two stages in Figure 5(b) and uses the input $v_{i}(t)=\cos (500 t)$, would he get the steady-state output he was looking for? Why? Properly justify your answer.
Part VI: [2 bonus points] If the instructor were to connect a source circuit whose Thévenin equivalent is $v_{T}(t)=v_{i}(t)$ and $R_{T}=100 \mathrm{Ohms}$ to his design with op-amps in Part IV, should he expect to get the steady-state output he was looking for too?

6. Design [10 points]

Provide an alternative design solution to the ones proposed by the instructor in Question 5. The goal is to design a circuit whose transfer function is

$$
T(s)=\frac{1000 s}{s^{2}+1100 s+10^{5}}
$$

You can only use $1 \mathrm{op}-\mathrm{amp}$ and components with the same values as those used in the instructor's design (i.e., 100Ω-resistors, 100 mH -inductors, and 0.1 mF -capacitors). Your design should be based on connecting two voltage dividers and one non-inverting op-amp. Make sure you properly justify that the chain rule applies.

