Equivalent Circuits & Reduction (T&R Chap 2,3)

Circuit Equivalence

Two circuits are equivalent if they have the same *i-v* characteristics at a specified pair of terminals

Terminal = external connection to two nodes = port

Our aim is to simplify analysis replacing complicated subcircuits by simpler equivalent circuits

Example

Association of resistors

Equivalent Circuits & Reduction (T&R Chap 2,3)

_

Resistors in Series

 $R_{EQ} = R_1 + R_2$

Resistors in Parallel

MAE140 Linear Circuits

Example 2-11 (T&R, 5th ed, p. 34)

Consider the circuit

Compute equivalent ccts from AB and from CD

$$R_{EQ_{CD}} = R_2 \parallel R_3 = \left(\frac{1}{R_2} + \frac{1}{R_3}\right)^{-1} = \frac{R_2 R_3}{R_2 + R_3}$$

$$R_{EQ_{AB}} = R_1 + R_2 \parallel R_3 = R_1 + \frac{R_2 R_3}{R_2 + R_3}$$

Example 2-10 (T&R, 5th ed, p. 31) Revisited

Can you find i_A ?

All you need to know is

Example 2-10 (T&R, 5th ed, p. 31) Revisited

Can you find i_A ?

All you need to know is

Answer

$$i_A = -i_R = -30/150 = -200 \ mA;$$

Equivalent ccts

Equivalent ccts for resistive networks are familiar reductions of parallel and series connections

The equivalent cct depends on the port

From an external view the cct could be replaced by its equivalent

The internal cct variables are now unavailable How would you compute them?

Could we substitute for the cct below?

Equivalent sources

Equivalent Sources (cntd)

 $v = v_S$

Equivalent Sources (cntd)

Equivalent Sources (cntd)

Reduce complexity by successively replacing elements by their equivalents

What happens with three elements in series or in parallel?

 $G_i = \frac{1}{R_i}$

MAE140 Linear Circuits

38

Voltage Dividers

Often we use a voltage divider to provide an input voltage to a cct element When would this work?

> When the "rest of cct" does not draw much current compared to R_2 Why is this? What is it asking of the equivalent of the rest of cct?

> > Note that this is a very common circuit used to "bias" a transistor to an operating voltage

Thévenin Equivalent Ccts

Thévenin's Theorem

If the source cct in a two-terminal interface is linear, then the interface signals v and i do not change when the source cct is replaced by its Thévenin equivalent

Note: nobody says the load must be linear!

Thévenin Equivalent Circuit

 v_T is the open-cct voltage of source R_T is evaluated from short-cct current

MAE140 Linear Circuits

Thévenin's Theorem Proof

Linearity of the Source cct is the key – superposition

Hook up a test current source to cct

 i_{test} yields voltage v_{test}

Part I, $i_{test,1}=0$ but *i* and *v* sources in Source cct left ON then $v_{test,1}=v_{oc}=v_T$

Part II, $i_{test,2} \neq 0$ and sources left OFF in Source cct then $v_{test,2} = -R_T i_{test,2}$

By linearity of the Source cct v_{test} is the sum of these parts for any choice of i_{test}

This establishes the *i*-*v* relationship for any load cct

Exercise from midterm, Fall 11

- 1. Turn off all the sources in the circuit and find the equivalent resistance as seen from terminals A-B (10Ω)
- 2. Find the Thévenin equivalent as seen from terminals A-B (-10V)
- 3. Find the power absorbed by a 40Ω resistor that is connected to terminals A-B (1.6W)

Norton Equivalent Ccts

Norton's Theorem

If the source cct in a two-terminal interface is linear, then the interface signals v and i do not change when the source cct is replaced by its Norton equivalent

Example 3-16 p.110 T&R, 5th ed

Find the Thévenin and Norton equivalent ccts of

Find the voltage, current and power if load is 50Ω

Answer:
$$v_T = -30V$$
; $i_N = -417mA$; $R_N = R_T = 72\Omega$
 $V = -12.3V$; $i = -246mA$; $p = 3.03W$