# Systematic Circuit Analysis (T&R Chap 3)

### Node-voltage analysis

Using the voltages of the each node relative to a ground node, write down a set of consistent linear equations for these voltages

Solve this set of equations using, say, Cramer's Rule

#### Mesh current analysis

Using the loop currents in the circuit, write down a set of consistent linear equations for these variables. Solve.

This introduces us to procedures for systematically describing circuit variables and solving for them

# Nodal Analysis

#### Node voltages

Pick one node as the ground node  $\perp$ 

Label all other nodes and assign voltages  $v_A$ ,  $v_B$ , ...,  $v_N$ 

and currents with each branch  $i_1$ , ...,  $i_M$ 

Recognize that the voltage across a branch

is the difference between the end node

voltages

Thus  $v_3 = v_B - v_C$  with the direction as indicated

Write down the KCL relations at each node

Write down the branch *i-v* relations to express branch currents in terms of node voltages

Accommodate current sources

Obtain a set of linear equations for the node voltages

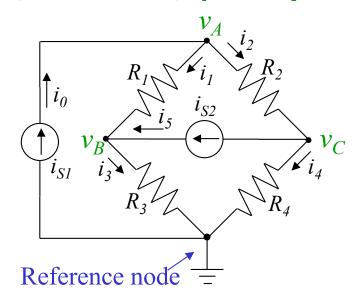
В

 $v_C$ 

# Nodal Analysis – Ex 3-1 (T&R, 5th ed, p.72)

**Apply KCL** 

Write the element/branch eqns



Substitute to get node voltage equations

Solve for  $v_A$ ,  $v_B$ ,  $v_C$  then  $i_0$ ,  $i_1$ ,  $i_2$ ,  $i_3$ ,  $i_4$ ,  $i_5$ 

# Nodal Analysis – Ex 3-1 (T&R, 5th ed, p.72)

### Apply KCL

Node A:  $i_0 - i_1 - i_2 = 0$ 

Node B: $i_1 - i_3 + i_5 = 0$ 

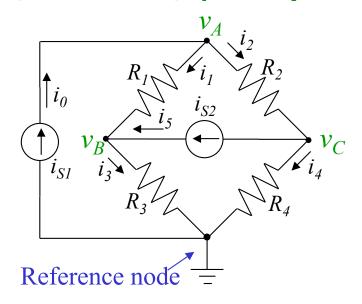
Node C:  $i_2 - i_4 - i_5 = 0$ 

#### Write the element/branch eqns

$$i_0=i_{S1}$$
  $i_3=G_3V_B$ 

$$i_1 = G_1(v_A - v_B)$$
  $i_4 = G_4 v_C$ 

$$i_2 = G_2(v_A - v_C)$$
  $i_5 = i_{S2}$ 



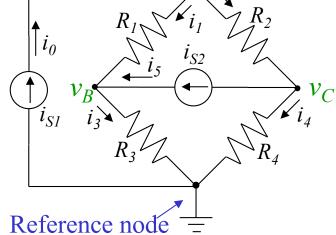
### Substitute to get node voltage equations

Node A:  $(G_1+G_2)v_A-G_1v_B-G_2v_C=i_{S1}$ Node B:  $-G_1v_A+(G_1+G_3)v_B=i_{S2}$ Node C:  $-G_2v_A+(G_2+G_4)v_C=-i_{S2}$   $(G_1+G_2 -G_1 -G_1 -G_2) (v_A v_B) = (i_{S1} i_{S2} -G_2 -G_2) (v_A) (v_B) = (i_{S1} i_{S2} -G_2) (v_A) (v_B) = (i_{S2} i_{S2} -G_2) (v_A) (v_A) = (i_{S2} i_{S2} -G_2) (v_A) (v_A) (v_B) = (i_{S2} i_{S2} -G_2) (v_A) (v_A) (v_B) = (i_{S2} i_{S2} -G_2) (v_A) (v_B) (v_B) (v_B) = (i_{S2} i_{S2} -G_2) (v_B) ($ 

Solve for  $v_A$ ,  $v_B$ ,  $v_C$  then  $i_0$ ,  $i_1$ ,  $i_2$ ,  $i_3$ ,  $i_4$ ,  $i_5$ 

Systematic Nodal Analysis

$$\begin{pmatrix} G_1 + G_2 & -G_1 & -G_2 \\ -G_1 & G_1 + G_3 & 0 \\ -G_2 & 0 & G_2 + G_4 \end{pmatrix} \begin{pmatrix} v_A \\ v_B \\ v_C \end{pmatrix} = \begin{pmatrix} i_{S1} \\ i_{S2} \\ -i_{S2} \end{pmatrix}$$



#### Writing node equations by inspection

Note that the matrix equation looks  $\frac{\text{Reference}}{\text{just like } \underline{Gv} = \underline{i} \text{ for matrix } \underline{G} \text{ and vector } \underline{v} \text{ and } \underline{i}$   $\underline{G}$  is symmetric (and non-negative definite)

Diagonal (i,i) elements: sum of all conductances connected to node i

Off-diagonal (i,j) elements: -conductance between nodes i and j

Right-hand side: current sources entering node i

There is no equation for the ground node – the column sums give the conductance to ground

Nodal Analysis Ex. 3-2 (T&R, 5th ed, p.74)

#### Node A:

Conductances

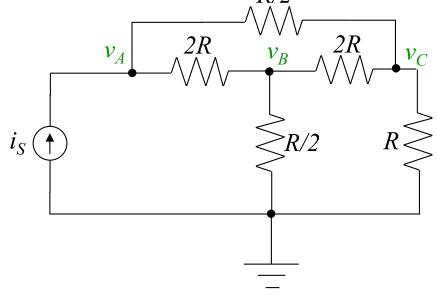
Source currents entering

#### Node B:

Conductances

#### Node C:

Conductances



Source currents entering

Source currents entering

# Nodal Analysis Ex. 3-2 (T&R, 5th ed, p.74)

#### Node A:

Conductances

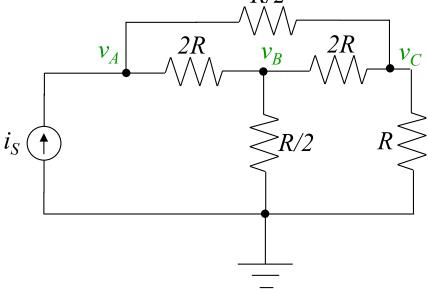
$$G/2_B + 2G_C = 2.5G$$

Source currents entering =  $i_S$ 

#### Node B:

Conductances

$$G/2_A+G/2_C+2G_{ground}=3G$$



 $G/2_A + G/2_C + 2G_{around} = 3G$  Source currents entering = 0

#### Node C:

Conductances

$$2G_A+G/2_B+G_{ground}=3.5G$$

 $2G_A + G/2_B + G_{around} = 3.5G$  Source currents entering = 0

$$\begin{pmatrix} 2.5G & -0.5G & -2G \\ -0.5G & 3G & -0.5G \\ -2G & -0.5G & 3.5G \end{pmatrix} \begin{pmatrix} v_A \\ v_B \\ v_C \end{pmatrix} = \begin{pmatrix} i_S \\ 0 \\ 0 \end{pmatrix}$$
MAE140 Linear Circuits

# Nodal Analysis – some points to watch

1. The formulation given is based on KCL with the sum of currents *leaving* the node

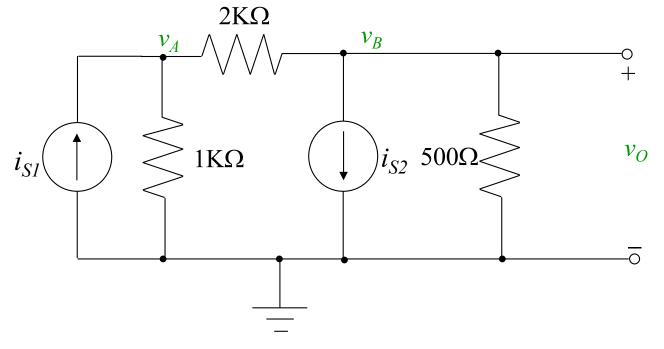
$$0=i_{total}=G_{AtoB}(v_A-v_B)+G_{AtoC}(v_A-v_C)+...+G_{AtoGround}v_A+i_{leavingA}$$
  
This yields

$$0 = (G_{AtoB} + ... + G_{AtoGround}) V_A - G_{AtoB} V_B - G_{AtoC} V_C ... - i_{enteringA}$$
$$(G_{AtoB} + ... + G_{AtoGround}) V_A - G_{AtoB} V_B - G_{AtoC} V_C ... = i_{enteringA}$$

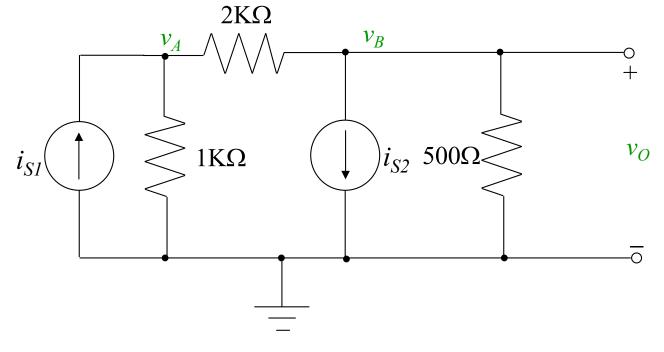
- 2. If in doubt about the sign of the current source, go back to this basic KCL formulation
- 3. This formulation works for independent current sources

For dependent current sources (introduced later) use your wits

# Nodal Analysis Ex. 3-2 (T&R, 5th ed, p. 72)



# Nodal Analysis Ex. 3-2 (T&R, 5th ed, p. 72)



$$\begin{pmatrix} 1.5 \times 10^{-3} & -0.5 \times 10^{-3} \\ -0.5 \times 10^{-3} & 2.5 \times 10^{-3} \end{pmatrix} \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} i_{S1} \\ -i_{S2} \end{pmatrix}$$

#### Solve this using standard linear equation solvers

Cramer's rule

Gaussian elimination

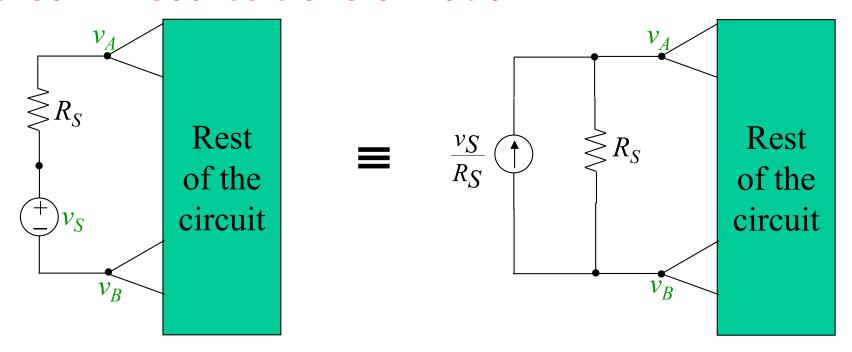
Matlab

# Nodal Analysis with Voltage Sources

Current through voltage source is not computable from voltage across it. We need some tricks!

They actually help us simplify things

Method 1 – source transformation

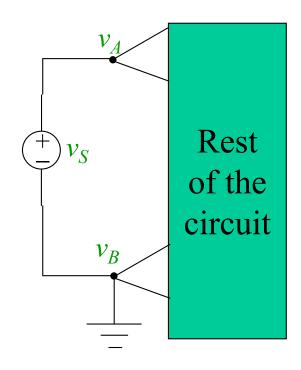


Then use standard nodal analysis – one less node!

55

# Nodal Analysis with Voltage Sources 2

#### Method 2 – grounding one node



This removes the  $v_B$  variable (plus we know  $v_{A=}v_S$ ) – simpler analysis But can be done once per circuit

56

# Nodal Analysis with Voltage Sources 3

#### Method 3

Create a *supernode* 

Act as if A and B were one node KCL still works for this node

Sum of currents entering supernode box is 0

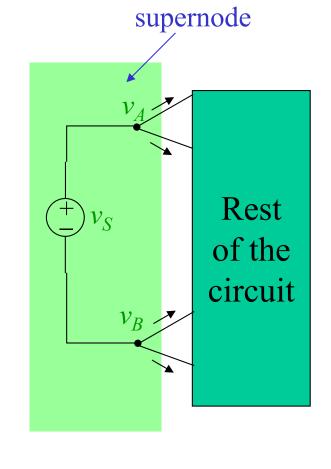
Write KCL at all N-3 other nodes

(N-2 nodes less Ground node)

using  $v_A$  and  $v_B$  as usual

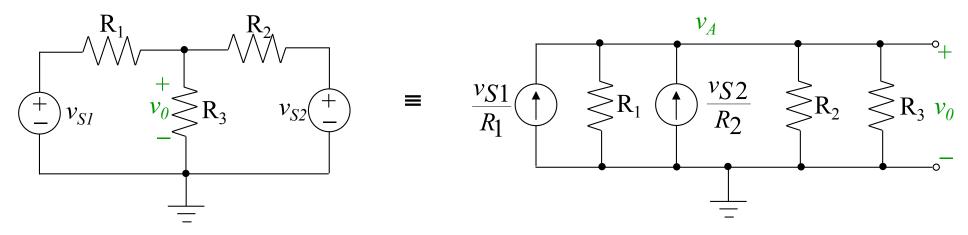
+Write one supernode KCL

+Add the constraint  $v_A$ - $v_B$ = $v_S$ 



These three methods allow us to deal with all cases

# Nodal Analysis Ex. 3-4 (T&R, 5th ed, p. 76)

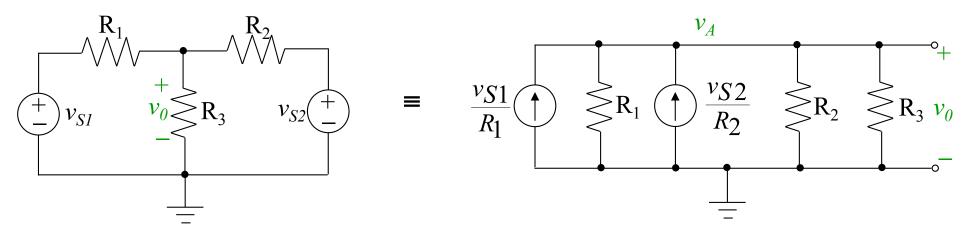


This is method 1 – transform the voltage sources

Applicable since voltage sources appear in series with Resist

Now use nodal analysis with one node, A

# Nodal Analysis Ex. 3-4 (T&R, 5th ed, p. 76)



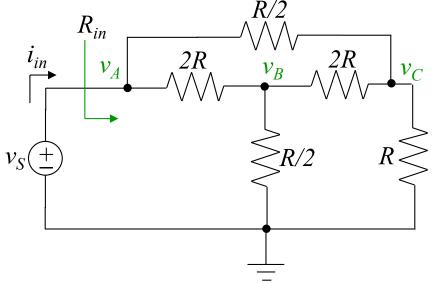
### This is method 1 – transform the voltage sources

Applicable since voltage sources appear in series with Resist

Now use nodal analysis with one node, A

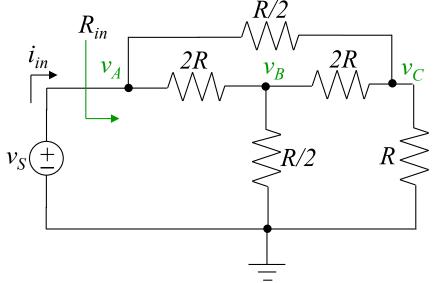
$$(G_1 + G_2 + G_3)v_A = G_1v_{S1} + G_2v_{S2}$$
$$v_A = \frac{G_1v_{S1} + G_2v_{S2}}{G_1 + G_2 + G_3}$$

Nodal Analysis Ex. 3-5 (T&R, 5th ed, p. 77)



What is the circuit input resistance viewed through  $v_s$ ?

# Nodal Analysis Ex. 3-5 (T&R, 5th ed, p. 77)



What is the circuit input resistance viewed through  $v_s$ ?

$$v_A = v_S$$
  
 $-0.5Gv_A + 3Gv_B - 0.5Gv_C = 0$   
 $-2Gv_A - 0.5Gv_B + 3.5v_C = 0$ 

Rewrite in terms of  $v_S$ ,  $v_B$ ,  $v_C$ This is method 2

$$3Gv_B - 0.5Gv_C = 0.5Gv_S$$
  
 $-0.5Gv_B + 3.5Gv_C = 2Gv_S$ 

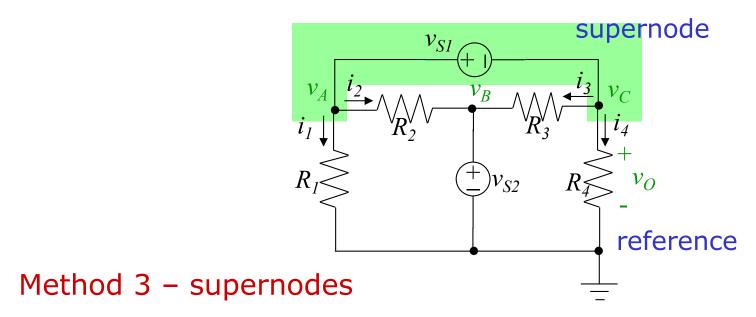
Solve

$$v_B = \frac{2.75v_S}{10.25}, v_C = \frac{6.25v_S}{10.25}$$

$$i_{in} = \frac{v_S - v_B}{2R} + \frac{v_S - v_C}{R/2} = \frac{11.75v_S}{10.25R}$$

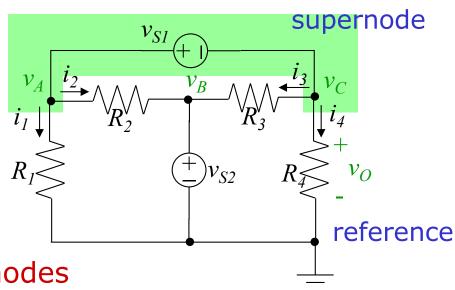
$$R_{in} = \frac{10.25R}{11.75} = 0.872R$$

# Nodal Analysis Ex. 3-6 (T&R, 5th ed, p. 78)



62

# Nodal Analysis Ex. 3-6 (T&R, 5th ed, p. 78)



#### Method 3 – supernodes

KCL for supernode:  $i_1 + i_2 + i_3 + i_4 = 0$ 

Or, using element equations

$$G_1 v_A + G_2 (v_A - v_B) + G_3 (v_C - v_B) + G_4 v_C = 0$$

Now use  $v_B = v_{S2}$ 

$$(G_1+G_2)v_A+(G_3+G_4)v_C=(G_2+G_3)v_{S2}$$

Other constituent relation

$$v_A - v_C = v_{S1}$$

# Mesh Current Analysis

#### Dual of Nodal Voltage Analysis with KCL

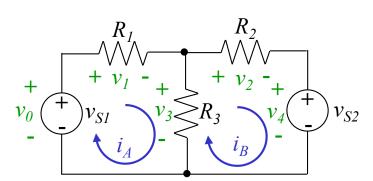
Mesh Current Analysis with KVL

Mesh = loop enclosing no elements

Restricted to Planar Ccts – no crossovers (unless you are really clever)

Key Idea: If element K is contained in both mesh i and mesh j then its current is  $i_k=i_i-i_j$  where we have taken the reference directions as appropriate

#### Same old tricks you already know



Mesh A: 
$$-v_0+v_1+v_3=0$$
  $v_1=R_1i_A$   $v_0=v_{S1}$   
Mesh B:  $-v_3+v_2+v_4=0$   $v_2=R_2i_B$   $v_4=v_{S2}$   
 $v_3=R_3(i_A-i_B)$ 

$$(R_1+R_3)i_A-R_3i_B=v_{S1}$$
  
- $R_3i_A+(R_2+R_3)i_B=-v_{S2}$ 

$$\begin{pmatrix} R_1 + R_3 & -R_3 \\ -R_3 & R_2 + R_3 \end{pmatrix} \begin{pmatrix} i_A \\ i_B \end{pmatrix} = \begin{pmatrix} v_{S1} \\ -v_{S2} \end{pmatrix}$$

### Mesh Analysis by inspection $Ri = v_S$

#### Matrix of Resistances R

Diagonal ii elements: sum of resistances around loop

Off-diagonal *ij* elements: - resistance shared by loops *i* and *j* 

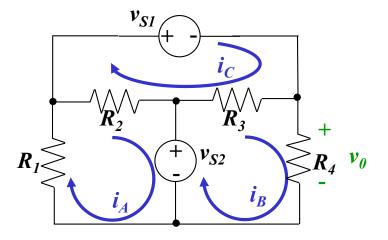
#### Vector of currents i

As defined by you on your mesh diagram

### Voltage source vector v<sub>S</sub>

Sum of voltage sources **assisting** the current in your mesh

If this is hard to fathom, go back to the basic KVL to sort
these directions out



### Mesh Analysis by inspection $Ri = v_S$

#### Matrix of Resistances R

Diagonal ii elements: sum of resistances around loop

Off-diagonal *ij* elements: - resistance shared by loops *i* and *j* 

#### Vector of currents i

As defined by you on your mesh diagram

### Voltage source vector v<sub>S</sub>

Sum of voltage sources **assisting** the current in your mesh

If this is hard to fathom, go back to the basic KVL to sort
these directions out

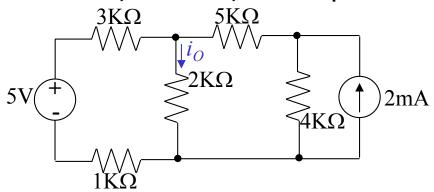
$$R_{1} = \begin{pmatrix} v_{S1} \\ i_{C} \\ R_{2} \\ k_{3} \\ k_{4} \end{pmatrix} \begin{pmatrix} R_{1} + R_{2} & 0 & -R_{2} \\ 0 & R_{3} + R_{4} & -R_{3} \\ -R_{2} & -R_{3} & R_{2} + R_{3} \end{pmatrix} \begin{pmatrix} i_{A} \\ i_{B} \\ i_{C} \end{pmatrix} = \begin{pmatrix} -v_{S2} \\ v_{S2} \\ -v_{S1} \end{pmatrix}$$

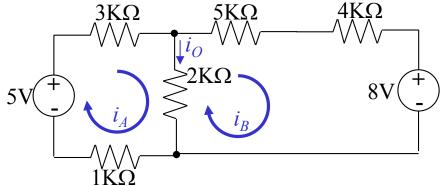
# Mesh Equations with Current Sources

### Duals of tricks for nodal analysis with voltage sources

1. Source transformation to equivalent

T&R, 5th ed, Example 3-8 p. 91



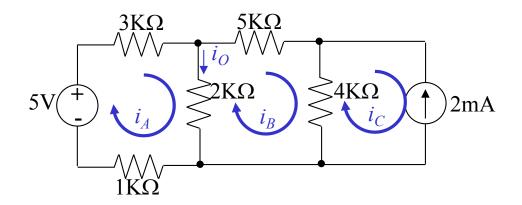


$$\begin{pmatrix} 6000 & -2000 \\ -2000 & 11000 \end{pmatrix} \begin{pmatrix} i_A \\ i_B \end{pmatrix} = \begin{pmatrix} 5 \\ -8 \end{pmatrix}$$
  $i_A = 0.6290 \text{ mA}$   $i_B = -0.6129 \text{ mA}$   $i_O = i_A - i_B = 1.2419 \text{ mA}$ 

$$i_A = 0.6290 \text{ mA}$$
  
 $i_B = -0.6129 \text{ mA}$   
 $i_O = i_A - i_B = 1.2419 \text{ mA}$ 

# Mesh Analysis with ICSs – method 2

#### Current source belongs to a single mesh



Same example

$$6000i_A - 2000i_B = 5$$
$$-2000i_A + 11000i_B - 4000i_C = 0$$
$$i_C = -2 \,\text{mA}$$

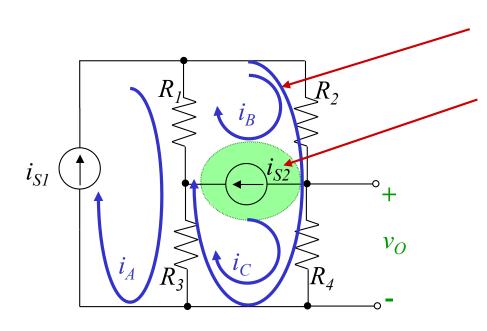
Same equations!
Same solution

### Mesh Analysis with ICSs - Method 3

#### Supermeshes – easier than supernodes

Current source in more than one mesh and/or not in parallel with a resistance

- 1. Create a supermesh by eliminating the whole branch involved
- 2. Resolve the individual currents last



Supermesh

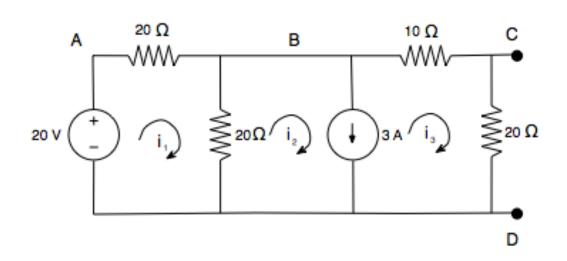
Excluded branch

$$R_{1}(i_{B}-i_{A})+R_{2}i_{B}+R_{4}i_{C}+R_{3}(i_{C}-i_{A})=0$$

$$i_{A}=i_{S1}$$

$$i_{B}-i_{C}=i_{S2}$$

#### Exercise from old midterm



Set up mesh analysis equations

Do not use any source transformation!

Supermesh

$$i_2 - i_3 = 3$$
  
 $10i_3 + 20i_3 + 20(i_2 - i_1) = 0$ 

Remaining mesh

$$20i_{1} + 20(i_{1} - i_{2}) = 20$$

# Summary of Mesh Analysis

- 1. Check if cct is planar or transformable to planar
- 2. Identify meshes, mesh currents & supermeshes
- 3. Simplify the cct where possible by combining elements in series or parallel
- 4. Write KVL for each mesh
- 5. Include expressions for ICSs
- 6. Solve for the mesh currents

### Linearity & Superposition

# Linear cct – modeled by linear elements and independent sources

Linear functions

Homogeneity: f(Kx) = Kf(x)

Additivity: f(x+y)=f(x)+f(y)

### Superposition –follows from linearity/additivity

Linear cct response to multiple sources is the sum of the responses to each source

- 1. "Turn off" all independent sources except one and compute cct variables
- 2. Repeat for each independent source in turn
- 3. Total value of all cct variables is the sum of the values from all the individual sources

# Superposition

### Turning off sources

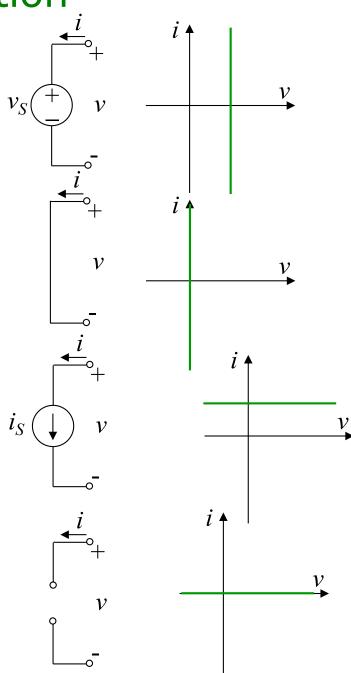
Voltage source

Turned off when v=0 for all i a short circuit

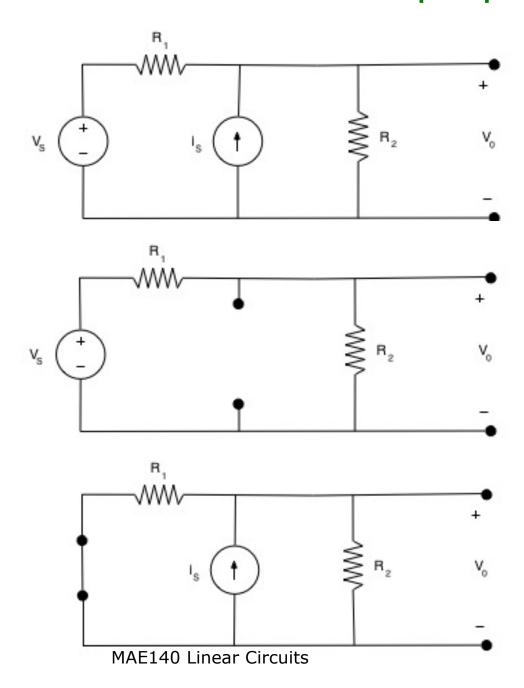


Turned off when i=0 for all v an open circuit

We have already used this in Thévenin and Norton equiv



### Superposition



Find  $V_0$  using superposition

$$v_{0} = \frac{R_{2}}{R_{1} + R_{2}} v_{s} + \frac{R_{1}R_{2}}{R_{1} + R_{2}} i_{s}$$

$$v_{01} = \frac{R_{2}}{R_{1} + R_{2}} v_{s}$$

$$v_{02} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}i_{s}$$

#### Where are we now?

#### Finished resistive ccts with ICS and IVS

Two analysis techniques – nodal voltage and mesh current Preference depends on simplicity of the case at hand

The aim has been to develop general techniques for access to tools like matlab

#### Where to now?

Active ccts with resistive elements – transistors, op-amps

Life starts to get interesting – getting closer to design

Capacitance and inductance – dynamic ccts

Frequency response – *s*-domain analysis

Filters