
MAE143 A - Signals and Systems - Winter 11
Final

Instructions

(i) This exam is open book. You may use whatever written materials you choose, including
your class notes and textbook. You may use a hand calculator with no communication
capabilities

(ii) You have 3 hours

(iii) Do not forget to write your name, student number, and instructor

1. Filtering and sampling. The continuous-time signal x(t) = 100 sinc2(100t) goes through an
ADC block that samples signals at a frequency fs = 190 Hz. Answer the following questions

(a) (1 point) Compute the Fourier transform of x(t). What is its bandwidth?

(b) (1 point) Would you be able to reconstruct the original signal out of the samples taken by
the ADC block? Why?

(c) (2 points) Consider a system whose impulse response is given by

h(t) = 150 sinc(150t)

What kind of filter is this? What is its cutoff frequency in Hz? Plot the magnitude and
phase of the transfer function.

(d) Suppose the signal x(t) passes first through the system in (c) to produce the signal y(t)
and then goes through the ADC block to produce the samples, see Figure 1.

h(t) ADC

x(t) samplesy(t)

Figure 1: Block diagram for question 3, part (d).

i. (1 point) What is the bandwidth of y(t)? Would you be able to reconstruct the signal
y(t) out of the samples taken by the ADC block? Justify your answer.

ii. (1 point) Why would one call the system in (c) an antialiasing filter?

(e) (1 point (bonus)) With knowledge of y(t), would you be able to recover the original sig-
nal x(t)? Why?

Solution: (a) Using the table of basic transforms and properties (time scaling), the Fourier
transform of x(t) is

X(f) = tri
(

f

100

)
(+ .5 point)

The bandwidth of this signal is therefore fB = 100 Hz. (+ .5 point)



(b) No, because the sampling frequency is below the Nyquist rate, fs = 190 < 2fB = 200.

(+ 1 point)

(c) We compute the transfer function of the system as

H(f) = rect
(

f

150

)
(+ 1 point)

Therefore, this is an ideal lowpass filter with cutoff frequency fc = 75 Hz. (+ .5 point)

The phase plot of the filter is trivial (identically zero). The magnitude plot looks like

-100 -50 50 100

0.2

0.4

0.6

0.8

1

(+ .5 point)

(d.i) After the signal x(t) goes through the ideal filter, all frequencies above the cutoff
frequency (75 Hz) get cut. Therefore, the bandwidth of y(t) is 75 Hz. (+ .5 point)

Since the sampling frequency of the ADC block is 190 > 150 = 2 ∗ 75, we will be able to
reconstruct the signal y(t) out of the samples produced by the ADC block. (+ .5 point)

(d.ii) The reason for the antialiasing name comes from the effect that this filter has on the
signal. Since it makes sure that no frequency larger than fs

2 will get into the ADC block, it
eliminates the possibility of aliasing when performing the sampling. (+ 1 point)

(e) No, an ideal filter is not invertible. (+ 1 extra point)

2. Continuous-time Fourier Series (CTFS) and system response. Consider a periodic function
described over one fundamental period (T0 = 4) by

x(t) =

{
1− t, t ∈ [0, 1],
0, t ∈ [−2, 0] ∪ [1, 2].

Do the following

(a) (.5 points) Plot x(t) over the interval [−6, 6]. Could this signal correspond to the impulse
response of a causal system? Why?

(b) (2 points) Show that the harmonic numbers of x(t) with representation time TF = T0 are

X[0] =
1
8
,

X[k] =
1

π2k2

(
1− j

π

2
k − e−j π

2
k
)

, k ∈ Z \ {0}.

Page 2



(c) (1.5 points) Compute the transfer function of the LTI system

ẏ(t) + y(t) = x(t)

What is the impulse response? Is the system BIBO stable?

(d) (2 points) Show, using the CTFS from (b) and the transfer function from (c), that the re-
sponse y(t) of the LTI system to the input signal x(t) is

y(t) = X[0] +
∞∑

k=1

4√
4 + π2k2

|X[k]| cos
(

π

2
kt− arctan(

πk

2
) + ∠X[k]

)

Solution: (a) Over [−2, 2], the function x(t) is only nonvanishing on [0, 1], where it looks
like a unit triangle. It has fundamental period T0 = 4. Therefore, the plot of x(t) over the
interval [−6, 6] is

-6 -4 -2 2 4 6

1

(+ .25 point)

The function cannot be the impulse response of a causal system because there are values
of time before t = 0 for which the function is nonzero. Since the impulse is exerted at
t = 0, a causal system cannot anticipate the future to make this happen. (+ .25 point)

(b) To compute the Fourier series of x(t), we need to compute the harmonic numbers

X[k] =
1
T0

∫ t0+T0

t0

x(t)e−j2πkf0tdt (+ .5 point)

We select t0 = −T0/2 = −2 (any choice would give the same answer since the function is
periodic). For k = 0, we get

X[0] =
1
4

∫ 1

0
(1− t)dt =

1
8
. (+ .5 point)

Next, we reason for the case when k 6= 0. Over the interval [−2, 2], the function is only
non-vanishing in [0, 1]. Then,

X[k] =
1
T0

∫ T0/2

−T0/2
x(t)e−j2πkf0tdt =

1
4

∫ 1

0
(1− t)e−j π

2
ktdt

Note that, using integration by parts,∫ b

a
te−ctdt = −1

c
te−ct

∣∣b
a

+
1
c

∫ b

a
e−ctdt = −1

c
te−ct

∣∣∣b
a
− 1

c2
e−ct

∣∣∣b
a

(+ .5 point)
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Substituting above, we get (for c = j π
2 k)

X[k] =
1
4

(
−1

c
e−ct +

1
c
te−ct +

1
c2

e−ct

) ∣∣∣1
0

=
1
4

(
−1

c
e−c +

1
c
e−c +

1
c2

e−c

)
− 1

4

(
−1

c
+ 0 +

1
c2

)
=

1
4c2

(
e−c + c− 1

)
=

1
π2k2

(
1− j

π

2
k − e−j π

2
k
)

(+ .5 point)

(c) We use the Laplace transform to get

sY (s) + Y (s) = X(s) (+ .25 point)

Therefore, the transfer function is

H(x) =
Y (s)
X(s)

=
1

s + 1
(+ .25 point)

The impulse response of the system can be computed by calculating the inverse Laplace
transform of the transfer function. Hence,

h(t) = L−1(H(s)) = e−tu(t) (+ .5 point)

The system is BIBO stable because
∫∞
−∞ |h(t)|dt < ∞ (+ .5 point)

(d) Since we have the CTFS of x(t) and the transfer function of the system, we know that
the response is

y(t) =
∞∑

k=−∞
X[k]H

(
j
πk

2

)
ej π

2
kt (+ .5 point)

Let us compute the magnitude and the phase of H
(
j πk

2

)
. Note that

H

(
j
πk

2

)
=

1
1 + j πk

2

Therefore,∣∣∣∣H (
j
πk

2

)∣∣∣∣ = 2√
4 + π2k2

, ∠H

(
j
πk

2

)
= 0− arctan

(
πk

2

)
(+ .5 point)

Then, we can write the response y(t) as

y(t) =
∞∑

k=−∞

2√
4 + π2k2

X[k]ej(π
2
kt−arctan(πk

2 ))

= X[0] +
−1∑

k=−∞

2√
4 + π2k2

X[k]ej(π
2
kt−arctan(πk

2 )) +
∞∑

k=1

2√
4 + π2k2

X[k]ej(π
2
kt−arctan(πk

2 ))

= X[0] +
∞∑

k=1

2√
4 + π2k2

X[−k]e−j(π
2
kt−arctan(πk

2 )) +
∞∑

k=1

2√
4 + π2k2

X[k]ej(π
2
kt−arctan(πk

2 ))

(+ .5 point)
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Using the facts that |X[k]| = |X[−k]| and ∠X[−k] = −∠X[k], we write

y(t) = X[0] +
∞∑

k=1

2√
4 + π2k2

|X[k]|
(
e−j(π

2
kt−arctan(πk

2
)+∠X[k]) + ej(π

2
kt−arctan(πk

2
)+∠X[k])

)
= X[0] +

∞∑
k=1

4√
4 + π2k2

|X[k]| cos
(

π

2
kt− arctan(

πk

2
) + ∠X[k]

)
(+ .5 point)

3. Continuous-time Fourier Transform (CTFT). Consider the periodic signal

z(t) = tri(t− 1) ∗ δ2(t)

Do the following

(a) (1 point) Plot z(t) over the interval [−6, 6]. What is the fundamental period of z(t)?

(b) (2 points) Show, using only the tables of basic CTFT transforms and basic CTFT proper-
ties, that the Fourier transform of z(t) is

Z(f) =
1
2
δ(f)−

∞∑
k=−∞

2
π2(2k − 1)2

δ

(
f − 2k − 1

2

)
and sketch a plot of its magnitude |Z(f)|.

(c) (3 points) Consider now the signal

u(t) = z(t) rect
(

t− 1
4

)
Plot the signal u(t) on the interval [−6, 6]. Compute the Fourier transform of u(t) using
the tables of basic CTFT transforms and basic CTFT properties together with the solution
to (b).

(d) (1 point (bonus)) The effect in the time domain that the multiplication by the rectangle
function has on z(t) is called ’windowing.’ Can you explain what is the effect of window-
ing in the spectrum of z(t)?

Solution: (a) The signal z(t) is a time-shifted unit triangle function with fundamental
period T0 = 2. (+ .5 point)

Its plot looks like
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1

(+ .5 point)
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(b) Since z(t) is periodic, its Fourier transform corresponds to an impulse train whose
coefficients are the harmonic numbers of its Fourier series. Using the multiplication-
convolution property, the Fourier transform of z(t) is

Z(f) = F(tri(t− 1))F(δ2(t)) (+ .5 point)

From the table of transforms in the book, we know F(tri(t)) = sinc2(f) and F(δ2(t)) =
1
2δ1/2(f). Using now the time shifting property of the Fourier transform, we get

Z(f) = sinc2(f)e−j2πf1 1
2
δ1/2(f) =

1
2
e−j2πf sinc2(f)δ1/2(f) (+ .5 point)

=
1
2

∞∑
k=−∞

e−jπk sinc2

(
k

2

)
δ

(
f − k

2

)

=
1
2
δ(f) +

1
2

∞∑
k=−∞

e−jπ(2k−1) sinc2

(
2k − 1

2

)
δ

(
f − 2k − 1

2

)

=
1
2
δ(f)−

∞∑
k=−∞

2
π2(2k − 1)2

δ

(
f − 2k − 1

2

)
(+ .5 point)

The plot of |Z(f)| looks like

ò ò ò
ò

ò ò

ò
ò ò

ò

-4 -2 2

0.1

0.2

0.3

0.4

0.5

(+ .5 point)

(c) The rectangle function rect
(

t−1
4

)
is only nonzero over the interval [−1, 3]. The plot u(t)

over the interval [−6, 6] is then

-6 -4 -2 2 4 6

1

(+ .5 point)
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The signal u(t) is not periodic anymore. Using the multiplication-convolution property,
the Fourier Transform of u(t) is

U(f) = Z(f) ∗ F
(

rect
(

t− 1
4

))
(+ .5 point)

From the table of transforms in the book, we know F (rect (t)) = sinc(f). Using the time
shifting and time scaling properties of the Fourier transform, we get

U(f) = Z(f) ∗
(
4 sinc(4f)e−j2πf

)
(+ 1 point)

=

(
1
2
δ(f)−

∞∑
k=−∞

2
π2(2k − 1)2

δ

(
f − 2k − 1

2

))
∗
(
4 sinc(4f)e−j2πf

)
= 2 sinc(4f)e−j2πf +

∞∑
k=−∞

8
π2(2k − 1)2

e−j2πf sinc (4f − 2(2k − 1)) (+ 1 point)

where we have used the fact that ejπ(2k−1) = −1.

(d) The effect that windowing has in the frequency domain is to spread the spectrum of
the signal z(t). This signal is periodic, and hence its energy is concentrated at frequencies
f = (2k − 1)/2 (deltas at these frequencies in the expression for the Fourier transform).
As can be seen in our answer in (c), the Fourier transform of the signal u(t) substitutes the
deltas by sinc functions that spread out the energy of the original signal throughout the
whole spectrum. (+ 1 extra point)
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