MAE143 A - Signals and Systems - Winter 11
 Midterm, February 2nd

Instructions

(i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a hand calculator with no communication capabilities
(ii) You have 50 minutes
(iii) Do not forget to write your name, student number, and instructor

1. Signals

Consider the following mathematical description of a continuous-time signal

$$
x(t)=u(t-1)-\left(1-e^{-(t-2)}\right) u(t-2)-\delta(t+1) .
$$

Sketch the plot of the following derived signals:
(a) (2 points) $x(t)$
(b) (2 points) $x(2-t)$
(c) (2 points) $x(t / 2)$

Solution:

NOTE: In this question we are not being picky about the value of $u(t)$ at $t=0$!
(a) Start with the third summand, which is a negative impulse at time $t=-1$. This is the only nonzero value taken by the function for $t<1$. At $t=1$, the first summand, a unit step, which start adding 1 to the value of the function. Finally, the second summand is zero for $t<2$, so $x(t) \equiv 1$ for $1<t<2$. For $t \geq 2$, this summand is negative, with value 0 at $t=2$, and then smoothly approaching -1 as t grows. A sketch of the plot is (+ $\mathbf{2}$ points)
$x(t)$

(b) The function $x(-t)$ has the same plot as the one above except that it is mirrored with respect to the vertical axis at 0 . For example, $x(-t)$ at $t=1$ is the impulse. The final function $x(2-t)$ is then shifted in time by two seconds. For example, $x(2-t)$ at $t=3$ is the impulse. A sketch of the plot is
(+ 2 points)

(c) The function $x(t / 2)$ has its time streched by a factor of 2 . For example, the impulse happens at $t=-2$. A sketch of the plot is

2. System Properties

A system takes as input the signal $x(t)$ and produces as output $y(t)$. Provide a detailed answer to the following question regarding properties of the systems:
(a) (2 points) If $y(t)=\tan ^{-1}(x(t))$, is the system linear? Is it invertible?
(b) (2 points) If $y(t)=\frac{1}{t} \int_{0}^{t} x(\tau) d \tau$ is the system linear? Is it time-invariant?
(c) (2 points) If $y^{\prime}(t)+y(t)=x(t)$ is the system linear? Is it BIBO stable?

Solution: (a) The system is not linear because the function $\tan ^{-1}$ is not, i.e.,

$$
\tan ^{-1}\left(x_{1}(t)+x_{2}(t)\right) \neq \tan ^{-1}\left(x_{1}(t)\right)+\tan ^{-1}\left(x_{2}(t)\right) . \quad(+1 \text { point })
$$

The system is invertible: given the response $y(t)=\tan ^{-1}(x(t)) \in(-\pi, \pi]$, we can determine the excitation by taking the tan, i.e.,

$$
\tan (y(t))=\tan \left(\tan ^{-1}(x(t))\right)=x(t)
$$

(+ 1 point)
Note that the system $y(t)=\tan (x(t))$ is not invertible!
(b) The system is linear, i.e., homogeneous and additive. Additivity follows from

$$
\frac{1}{t} \int_{0}^{t}\left(x_{1}(\tau)+x_{2}(\tau)\right) d \tau=\frac{1}{t} \int_{0}^{t} x_{1}(\tau) d \tau+\frac{1}{t} \int_{0}^{t} x_{2}(\tau) d \tau=y_{1}(t)+y_{2}(t)
$$

Homogeneity follows from

$$
\frac{1}{t} \int_{0}^{t} K x(\tau) d \tau=K \frac{1}{t} \int_{0}^{t} x(\tau) d \tau=K y(t)
$$

The system is not time-invariant, because

$$
\frac{1}{t} \int_{0}^{t} x\left(\tau-t_{0}\right) d \tau=\frac{1}{t} \int_{-t_{0}}^{t-t_{0}} x(\nu) d \nu \neq \frac{1}{t-t_{0}} \int_{0}^{t-t_{0}} x(\tau) d \tau=y\left(t-t_{0}\right) . \quad(+\mathbf{1} \text { point })
$$

(c) The system is linear since the ODE describing it is linear of the form $y^{\prime}=A y+B u$, with $A=-1$ and $B=1$.
(+ 1 point)
The unique eigenvalue of the homogeneous equation is -1 , and therefore, the system is BIBO stable.
(+ 1 point)

3. Impulse Response

An LTI system is described by the ODE

$$
y^{\prime \prime}(t)+y^{\prime}(t)=x(t)
$$

(a) (3 points) Compute the impulse response $h(t)$. Use your answer to determine if the system is BIBO stable.
(b) (3 points) Use the impulse response $h(t)$ and the convolution formula to compute $y(t)$ when $x(t)=e^{-2 t} u(t)$.
(c) (4 points (bonus)) Use Laplace transforms to compute the answer to the above items (a) and (b).

Solution: (a) Since the order of the system is $n=2$ and the input does not appear with any derivative, $m=0$, we are in the easiest of cases. We begin by substituting $x(t)$ by the impulse function,

$$
y^{\prime \prime}(t)+y^{\prime}(t)=\delta(t)
$$

Now integrating both sides from $-\infty$ to $t \geq 0$ under zero initial conditions, we get

$$
y^{\prime}(t)+y(t)=\int_{-\infty}^{t} \delta(\tau) d \tau=u(t)
$$

Integrating once more from $-\infty$ to $t \geq 0$ and using the zero initial conditions and the fact that $y(t)$ is impulse free, we get

$$
y(t)=\int_{-\infty}^{t} u(\tau) d \tau
$$

Therefore, at $t=0^{+}$, we have $y\left(0^{+}\right)=0$ and $y^{\prime}\left(0^{+}\right)=1$.
Alternatively, you can cite the notes on computing the impulse response for justifying your choice of initial conditions.
(+ 1 point)
Now, we need to solve the homogeneous equation

$$
y^{\prime \prime}(t)+y^{\prime}(t)=0
$$

with initial conditions $y\left(0^{+}\right)=0$ and $y^{\prime}\left(0^{+}\right)=1$. Use your preferred method to solve this equation (e.g., characteristic equation or simply using the change of variables $z=y^{\prime}$) to obtain the general solution

$$
y(t)=k_{1}-k_{2} e^{-t}
$$

Fitting the initial conditions, we get

$$
y\left(0^{+}\right)=k_{1}-k_{2}=0, \quad y^{\prime}\left(0^{+}\right)=k_{2}=1
$$

from where $k_{1}=k_{2}=1$.
(+ 1 point)
Therefore, the impulse response is

$$
\begin{equation*}
h(t)=\left(1-e^{-t}\right) u(t) . \tag{+.5point}
\end{equation*}
$$

The system is not BIBO stable because

$$
h(t) \geq\left(1-e^{-1}\right) u(t) \geq 0.6 u(t) \quad \text { for all } t>1
$$

Therefore

$$
\int_{-\infty}^{\infty}|h(\tau)| d \tau=\int_{-\infty}^{1}|h(\tau)| d \tau+\int_{1}^{\infty}|h(\tau)| d \tau \geq \int_{1}^{\infty}|h(\tau)| d \tau \geq 0.6 \int_{1}^{\infty} u(\tau) d \tau=+\infty
$$

hence the system is not BIBO stable. Here you can use any $t>0$ to prove a lower bound on $|h(t)|$ as we did above or simply state that $\lim _{t \rightarrow \infty}|h(t)|>0$ therefore the integral will diverge.
(+ . 5 point)
(b) We use the convolution formula to compute

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau=\int_{-\infty}^{\infty}\left(1-e^{-\tau}\right) u(\tau) e^{-2(t-\tau)} u(t-\tau) d \tau \quad \quad(+1 \text { point })
$$

This integral is zero if $\tau \leq 0$ and $t-\tau \leq 0$. For $t \geq 0$, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left(1-e^{-\tau}\right) u(\tau) e^{-2 t+2 \tau} u(t-\tau) d \tau & =e^{-2 t} \int_{0}^{t}\left(1-e^{-\tau}\right) e^{2 \tau} d \tau \\
& =\left.e^{-2 t}\left(\frac{1}{2} e^{2 \tau}-e^{\tau}\right)\right|_{0} ^{t}=e^{-2 t}\left(\frac{1}{2} e^{2 t}-e^{t}-\frac{1}{2}+1\right) \\
& =\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}
\end{aligned}
$$

Therefore, $y(t)=\left(\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}\right) u(t)$.
(+ . 5 point)
(c) We use the Laplace transform to find the transfer function of the system,

$$
\left(s^{2}+s\right) Y(s)=X(s)
$$

Therefore,

$$
H(s)=\frac{1}{s+s^{2}}
$$

(+ . 5 point)
Now compute the partial fraction expansion

$$
\begin{equation*}
H(s)=\frac{1}{s+s^{2}}=\frac{k_{1}}{s}+\frac{k_{2}}{s+1} \tag{+.5point}
\end{equation*}
$$

where the constants k_{1} and k_{2} are computed using the residues

$$
k_{1}=\lim _{s \rightarrow 0} s H(s)=\lim _{s \rightarrow 0} \frac{1}{1+s}=1, \quad k_{2}=\lim _{s \rightarrow-1}(s+1) H(s)=\lim _{s \rightarrow-1} \frac{1}{s}=-1, \quad(+.5 \text { point })
$$

The impulse response is the Laplace inverse of the transfer function, hence

$$
\begin{equation*}
h(t)=\mathcal{L}^{-1}(H(s))=\mathcal{L}^{-1}\left(\frac{1}{s}-\frac{1}{s+1}\right)=\left(1-e^{-t}\right) u(t) \tag{+.5point}
\end{equation*}
$$

Next, we find the response $y(t)$. In the frequency domain,

$$
\begin{equation*}
X(s)=\mathcal{L}\left(e^{-2 t} u(t)\right)=\frac{1}{s+2} \tag{+.5point}
\end{equation*}
$$

and

$$
\begin{equation*}
Y(s)=H(s) X(s)=\frac{1}{s+s^{2}} \frac{1}{s+2} \tag{+.5point}
\end{equation*}
$$

As before we produce the partial fraction expansion

$$
Y(s)=\frac{k_{1}}{s}+\frac{k_{2}}{s+1}+\frac{k_{3}}{s+2}
$$

where the constants are computed from the residues

$$
k_{1}=\lim _{s \rightarrow 0} s Y(s)=\frac{1}{2}, \quad k_{2}=\lim _{s \rightarrow-1}(s+1) Y(s)=-1, \quad k_{3}=\lim _{s \rightarrow-2}(s+2) Y(s)=1 / 2 .
$$

(+ . 5 point)
Finally,

$$
y(t)=\mathcal{L}^{-1}\left(\frac{1}{2} \frac{1}{s}-\frac{1}{s+1}+\frac{1}{2} \frac{1}{s+2}\right)=\left(\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}\right) u(t) . \quad(+.5 \text { point })
$$

