2.

(1) $i(t)=i_{s}(t)+i_{c}(t)$
(2) $i_{s}(t)=\frac{V_{s}}{R_{1}}$
(3) $i_{c}(t)=C \frac{d}{d t}\left(V_{c}(t)\right)$
(4) $V_{c}(t)+i_{c}(t) R_{2}=0$
(3), (4) \Rightarrow (5) $V_{c}(t)+C \frac{d}{d t}\left(V_{c}(t)\right) R_{2}=0$

The eigenvalue of the solution is $\lambda=-\frac{1}{C R_{2}}$, so the solution is $K e^{\lambda t}=K e^{-\frac{t}{C R_{2}}}$, where K is a constant we will get from initial condition.

Initial condition: The power switch is open before $t=0$, so it's just a simple series circuit containing V_{s}, R_{1}, C and R_{2}. The current of this series circuit is 0 and the capacitor store charges coming from V_{s}. Positive charges go to the left side of the capacitor while negative charges go to its right. $\Rightarrow V_{c}\left(0^{+}\right)=V_{c}\left(0^{-}\right)=-V_{s}=-10 \mathrm{~V}$

$$
\left\{\begin{array}{l}
V_{c}(t)=K e^{-\frac{t}{C R_{2}}}=K e^{-\frac{t}{18}} \Rightarrow K=-10, \quad V_{c}(t)=-10 e^{-\frac{t}{18}} \\
V_{c}(0)=-10 \mathrm{~V}
\end{array}\right.
$$

(2) $\Rightarrow i_{s}(t)=5$
(3) $\Rightarrow \quad i_{c}(t)=C \frac{d}{d t}\left(V_{c}(t)\right)=3 \frac{d}{d t}\left(V_{c}(t)\right)=\frac{5}{3} e^{-\frac{t}{18}}$
(1) $\Rightarrow i(t)=i_{s}(t)+i_{c}(t)=5+\frac{5}{3} e^{-\frac{t}{18}}$
13. (a) V : the volume with unit 1 ;
$C(t)$: the total amount of drug concentration, with unit mg / l;
k_{0} : the amount of drug enters the compartment per hour, with unit $\mathrm{mg} / \mathrm{hr}$;
k_{e} : the percentage of total concentrated drug that runs out of the compartment per hour, with unit hr^{-1}.

At some time point, drug enters the compartment is k_{0}; While total concentration amount is $C(t) V$, concentration created at this time point is $\frac{d}{d t}(C(t) V)$, with unit $\mathrm{mg} / \mathrm{hr}$; Excretion is the percentage per hour k_{e} multiply by the total concentrated amount $C(t) V$.

Then,

$$
\begin{aligned}
& \text { Concentration }=\text { Infusion - Excretion } \\
& \qquad V \frac{d}{d t}(C(t))=k_{0}-k_{e} C(t) V
\end{aligned}
$$

(b) Substitute with parameters $\Rightarrow 20 \frac{d}{d t}(C(t))+8 C(t)=200$
(1) Homogeneous solution: $20 \frac{d}{d t}(C(t))+8 C(t)=0$

The eigenvalue of the solution is $\lambda=-\frac{8}{20}=-0.4$, so the homogeneous solution should be in the form of $C_{h}(t)=K_{1} e^{-0.4 t}$, where K_{1} is a constant.
(2) Particular solution: As the right side of the equation is 200, the particular
solution should in a form of a constant K_{2}.
Put into the equation $\Rightarrow C_{p}(t)=K_{2}=\frac{200}{8}=25$
(3) Final solution: $C(t)=C_{h}(t)+C_{p}(t)=K_{1} e^{-0.4 t}+25$

Initial conditions: $C(0)=10 \mathrm{mg} / \mathrm{l}$

$$
\begin{gathered}
\Rightarrow \quad K_{1}=-15 \\
C(t)=\left(-15 e^{-0.4 t}+25\right) \mathrm{mg} / \mathrm{l}
\end{gathered}
$$

16.
(a) $\quad f(t)-m g \sin (\theta)-k_{f} v(t)=m a(t)$,
where $v(t)=\frac{d}{d t}(y(t)), \quad a(t)=\frac{d^{2}}{d t^{2}}(y(t))$

$$
\Rightarrow \quad m \frac{d^{2}}{d t^{2}}(y(t))+k_{f} \frac{d}{d t}(y(t))+m g \sin (\theta)=f(t)
$$

(b) No excitation force applied $\Rightarrow f(t)=0$

$$
m \frac{d^{2}}{d t^{2}}(y(t))+k_{f} \frac{d}{d t}(y(t))=-m g \sin (\theta)
$$

(1) Homogeneous solution:

The eigenvalues of the solution are: $\lambda_{1}=0, \lambda_{2}=-\frac{k_{f}}{m}$
So the homogeneous solution should in the form of:

$$
y_{h}(t)=K_{h 1} e^{\lambda_{1} t}+K_{h 2} e^{\lambda_{2} t}=K_{h 1}+K_{h 2} e^{-\frac{k_{f}}{m} t}
$$

(2) Particular solution:

The right side of the equation is a constant $-m g \sin (\theta)$ and the left side contains second order and first order derivatives, so the particular solution should in the form of a linear function of t, set as $y_{p}=K_{p} t$. Put into the equation $\Rightarrow K_{p}=-\frac{m g}{k_{f}} \sin (\theta), \quad y_{p}(t)=-\frac{m g}{k_{f}} \sin (\theta) t$
(3) Summation of homogeneous solution and particular solution:

$$
y(t)=y_{h}(t)+y_{p}(t)=K_{h 1}+K_{h 2} e^{-\frac{k_{f}}{m} t}-\frac{m g}{k_{f}} \sin (\theta) t
$$

Initial conditions:

$$
\begin{aligned}
& y(0)=0=K_{h 1}+K_{h 2}, \\
& y^{\prime}(0)=10=-\frac{k_{f}}{m} K_{h 2}-\frac{m g}{k_{f}} \sin (\theta)
\end{aligned}
$$

Substituting for the constants given in the problem statement: $m=1000 \mathrm{~kg}$, $k_{f}=5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}, \quad \theta=\pi / 12$ and using $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{gathered}
\Rightarrow \quad K_{h 2}=-\left(\frac{m}{k_{f}}\right)^{2} g \sin (\theta)-10 \frac{m}{k_{f}}=-1.0346 \times 10^{5} \\
K_{h 1}=-K_{h 2}=1.0346 \times 10^{5} \\
y(t)=1.0346 \times 10^{5}\left(1-e^{-\frac{t}{200}}\right)-507.28 t \\
y^{\prime}(t)=517.28 e^{-\frac{t}{200}}-507.28
\end{gathered}
$$

(c) Constant force $f(t)=F=200 \mathrm{~N}$ is applied,

$$
m \frac{d^{2}}{d t^{2}}(y(t))+k_{f} \frac{d}{d t} y(t)=F-m g \sin (\theta)
$$

(1) Homogeneous solution: same as part (b) (1)

$$
y_{h}(t)=K_{h 1} e^{x_{1} t}+K_{h 2} e^{x_{2} t}=K_{h 1}+K_{h 2} e^{-\frac{k_{f}}{m} t}
$$

(2) Particular solution: similar to part (b) (2)

The right side of the equation is a constant $F-m g \sin (\theta)$. Set particular solution as linear function of t, as $y_{p}=K_{p} t$. Put into the equation

$$
\begin{aligned}
\Rightarrow \quad K_{p} & =\frac{1}{k_{f}}[F-m g \sin (\theta)], \\
y_{p}(t) & =\frac{t}{k_{f}}[F-m g \sin (\theta)]
\end{aligned}
$$

(3) Summation:

$$
y(t)=y_{h}(t)+y_{p}(t)=K_{h 1}+K_{h 2} e^{-\frac{k_{f}}{m} t}+\frac{t}{k_{f}}[F-m g \sin (\theta)]
$$

$$
\begin{aligned}
& \frac{d}{d t}(y(t))=\left(-\frac{k_{f}}{m}\right) K_{h 2} e^{-\frac{k_{f}}{m} t}+\frac{1}{k_{f}}[F-m g \sin (\theta)] \\
& \lim _{t \rightarrow \infty}\left(\frac{d}{d t}(y(t))\right)=\frac{1}{k_{f}}[F-m g \sin (\theta)]=-467.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A negative terminal velocity indicates the force of 200 N is insufficient to move the car forward on that inclined plane, so the car is rolling backward down the hill.
17. System equation: $\quad 4 y^{\prime \prime}(t)+y^{\prime}(t)+3 y(t)=x(t)$

Linearity

$$
\begin{align*}
& x_{1}(t)=g(t) \Rightarrow 4 y_{1}^{\prime \prime}(t)+y_{1}^{\prime}(t)+3 y_{1}(t)=x_{1}(t)=g(t) \tag{1}\\
& x_{2}(t)=h(t) \Rightarrow 4 y_{2}^{\prime \prime}(t)+y_{2}^{\prime}(t)+3 y_{2}(t)=x_{2}(t)=h(t) \tag{2}\\
& x_{3}(t)=K g(t)+h(t) \Rightarrow 4 y_{3}^{\prime \prime}(t)+y_{3}^{\prime}(t)+3 y_{3}(t)=x_{3}(t)=K g(t)+h(t) \tag{3}\\
& (1) \times K+(2) \Rightarrow \\
& \quad 4 K y_{1}^{\prime \prime}(t)+4 y_{2}^{\prime \prime}(t)+K y_{1}^{\prime}(t)+y_{2}^{\prime}(t)+3 K y_{1}(t)+3 y_{2}(t)=K g(t)+h(t) \tag{4}
\end{align*}
$$

Comparing (3) and (4) $\Rightarrow y_{3}(t)=K y_{1}(t)+y_{2}(t)$
So this system is linear.
Time Invariance
$x_{1}(t)=g(t) \Rightarrow 4 y_{1}^{\prime \prime}(t)+y_{1}^{\prime}(t)+3 y_{1}(t)=x_{1}(t)=g(t)$
$x_{2}(t)=g\left(t-t_{0}\right) \Rightarrow 4 y_{2}^{\prime \prime}(t)+y_{2}^{\prime}(t)+3 y_{2}(t)=x_{2}(t)=g\left(t-t_{0}\right)$
Substituting t with $t-t_{0}$ in (1)

$$
\begin{equation*}
\Rightarrow 4 y_{1}^{\prime \prime}\left(t-t_{0}\right)+y_{1}^{\prime}\left(t-t_{0}\right)+3 y_{1}\left(t-t_{0}\right)=g\left(t-t_{0}\right) \tag{3}
\end{equation*}
$$

Comparing (2) and (3)

$$
\Rightarrow \quad y_{2}(t)=y_{1}\left(t-t_{0}\right)
$$

So this system is time invariant.

Stability
The eigenvalues of the solution of this system are:

$$
\begin{aligned}
& \lambda_{1}=-0.125+j 0.484 \\
& \lambda_{2}=-0.125-j 0.484
\end{aligned}
$$

Real parts of all eigenvalues are negative, so the system is stable.

Causality and Memory

The response at any time $t=t_{0}$ depends on the excitation at times $t<t_{0}$, not on any future values, so this system is causal and has memory.

Invertibility

The excitation of this system is expressed in terms of the response and its derivatives, so the excitation is uniquely determined by the response. This system is invertible.
18. System equation: $y(t)=x^{3}(t)$

Linearity

$x_{1}(t)=g(t) \quad \Rightarrow \quad y_{1}(t)=x_{1}^{3}(t)=g^{3}(t)$
$x_{2}(t)=h(t) \Rightarrow y_{2}(t)=x_{2}^{3}(t)=h^{3}(t)$
$x_{3}(t)=K g(t)+h(t) \Rightarrow y_{3}(t)=x_{3}^{3}(t)=[K g(t)+h(t)]^{3}$
(1) $\times K+(2) \Rightarrow K y_{1}(t)+y_{2}(t)=K g^{3}(t)+h^{3}(t)$

Comparing (3) and (4) $\Rightarrow y_{3}(t) \neq K y_{1}(t)+y_{2}(t)$
So this system is non-linear.
Time Invariance
$x_{1}(t)=g(t) \quad \Rightarrow \quad y_{1}(t)=x_{1}^{3}(t)=g^{3}(t)$
$x_{2}(t)=g\left(t-t_{0}\right) \quad \Rightarrow \quad y_{2}(t)=x_{2}^{3}(t)=g^{3}\left(t-t_{0}\right)$
Substituting t with $t-t_{0}$ in

$$
\begin{equation*}
\Rightarrow \quad y_{1}\left(t-t_{0}\right)=x_{1}^{3}\left(t-t_{0}\right)=g^{3}\left(t-t_{0}\right) \tag{3}
\end{equation*}
$$

Comparing (2) and (3) $\Rightarrow y_{2}(t)=y_{1}\left(t-t_{0}\right)$
So this system is time invariant.
Stability
If $x(t)$ is bounded then its response $y(t)$ is bounded, so this system is stable.

Causality and Memory

The response at any time $t=t_{0}$ depends only on the excitation at time $t=t_{0}$, not on any future value or any past values, so this system is causal and memoryless.

Invertibility

The excitation can be written in terms of its response as: $x(t)=y^{\frac{1}{3}}(t)$
Two cases need to be considered:
(1) When excitation $x(t)$ is real, the cube root produces a unique excitation for a given response, so the system is invertible for real $x(t)$.
(2) When excitation $x(t)$ is complex, the cube root operation is multiple valued, so the excitation cannot be uniquely determined by a given response. This system is non-invertible for complex $x(t)$.
22. System equation: $\quad y(t)=\operatorname{Re}(x(t))$

Homogeneity:

$x_{1}(t)=g(t)+j h(t)$, where $g(t)$ and $h(t)$ are both real-valued functions.

$$
\Rightarrow \quad y_{1}(t)=\operatorname{Re}[g(t)+j h(t)]=g(t)
$$

$x_{2}(t)=\left(K_{r}+j K_{i}\right)[g(t)+j h(t)]$, where K_{r}, K_{i} are both real constants.

$$
\Rightarrow \quad y_{1}(t)=\operatorname{Re}\left[\left(K_{r}+j K_{i}\right)[g(t)+j h(t)]\right]=K_{r} g(t)-K_{i} h(t)
$$

$$
\neq\left(K_{r}+j K_{i}\right) g(t)=\left(K_{r}+j K_{i}\right) y_{1}(t)
$$

So the system is not homogeneous.

Additivity:

$x_{1}(t)=g_{1}(t)+j h_{1}(t)$, where $g_{1}(t)$ and $h_{1}(t)$ are both real-valued functions.

$$
\Rightarrow \quad y_{1}(t)=\operatorname{Re}\left[g_{1}(t)+j h_{1}(t)\right]=g_{1}(t)
$$

$x_{2}(t)=g_{2}(t)+j h_{2}(t)$, where $g_{2}(t)$ and $h_{2}(t)$ are both real-valued functions.

$$
\Rightarrow \quad y_{2}(t)=\operatorname{Re}\left[g_{2}(t)+j h_{2}(t)\right]=g_{2}(t)
$$

$$
\begin{aligned}
x_{3}(t)=x_{1}(t)+x_{2}(t)= & \left(g_{1}(t)+g_{2}(t)\right)+j\left(h_{1}(t)+h_{2}(t)\right) \\
& \Rightarrow \quad y_{3}(t)=\operatorname{Re}\left[x_{3}(t)\right]=g_{1}(t)+g_{2}(t)=y_{1}(t)+y_{2}(t)
\end{aligned}
$$

So the system is additive.

