Homework 3

18a. We set $x(t)=\delta(t)$ to get the impulse response of the system:

$$
4 h^{\prime \prime}(t)=2 \delta(t)-\delta^{\prime}(t)
$$

Following the algorithm on Page 166, we get that $n=2, m=1, m<n$. Therefore our solution looks like

$$
h(t)=h_{\text {hom }}(t) u(t)
$$

The homogeneous solution $h_{\text {hom }}(t)$ should satisfy $4 h_{\text {hom }}^{\prime \prime}(t)=0$.

$$
h_{\text {hom }}(t)=C_{1} t+C_{2}, h(t)=\left(C_{1} t+C_{2}\right) u(t)
$$

Now we need to determine constants of integration. In order to do that we integrate original equation once from $t=0^{-}$to $t=0^{+}$.

$$
\begin{gathered}
4 h^{\prime}(0+)-4 h^{\prime}(0-)=2 \int_{0-}^{0+} \delta(t) d t-\int_{0-}^{0+} \delta^{\prime}(t) d t=2, \\
h^{\prime}(t)=C_{1} u(t)+\left(C_{1} t+C_{2}\right) \delta(t), \quad h^{\prime}(0-)=0, h^{\prime}(0+)=C_{1} .
\end{gathered}
$$

Therefore we get $4 C_{1}=2, C_{1}=0.5$. Now we integrate the initial equation twice:

$$
\begin{gathered}
4 h(0+)-4 h(0-)=2 \int_{0-}^{0+} \int_{-\infty}^{t} \delta(s) d s d t-\int_{0-}^{0+} \int_{-\infty}^{t} \delta^{\prime}(s) d s d t=-1 \\
h(0-)=0, h(0+)=C_{2}, 4 C_{2}=-1, C_{2}=-0.25
\end{gathered}
$$

The final answer is: $h(t)=(0.5 t-0.25) u(t)$.
18b. We set $x(t)=\delta(t)$ to get the impulse response of the system:

$$
h^{\prime \prime}(t)+9 h(t)=-6 \delta^{\prime}(t)
$$

Following the algorithm on Page 166, we get that $n=2, m=1, m<n$. Therefore our solution looks like $h(t)=h_{\text {hom }}(t) u(t)$.

The homogeneous solution $h_{\text {hom }}(t)$ should satisfy $h_{\text {hom }}^{\prime \prime}(t)+9 h_{\text {hom }}(t)=0$.

$$
h_{\text {hom }}(t)=C_{1} \cos 3 t+C_{2} \sin 3 t, h(t)=\left(C_{1} \cos 3 t+C_{2} \sin 3 t\right) u(t)
$$

Now we need to determine constants of integration. In order to do that we integrate original equation once from $t=0^{-}$to $t=0^{+}$.

$$
\begin{gathered}
h^{\prime}(0+)-h^{\prime}(0-)+9 \int_{0-}^{0+} h(t) d t=-6 \int_{0-}^{0+} \delta^{\prime}(t) d t=0, \\
h^{\prime}(t)=\left(-3 C_{1} \sin 3 t+3 C_{2} \cos 3 t\right) u(t)+\left(C_{1} \cos 3 t+C_{2} \sin 3 t\right) \delta(t),
\end{gathered}
$$

$$
h^{\prime}(0-)=0, h^{\prime}(0+)=3 C_{2}, \quad 9 \int_{0-}^{0+} h(t) d t=0, .
$$

Therefore we get $3 C_{2}=0, C_{2}=0$. Now we integrate the initial equation twice:

$$
\begin{gathered}
h(0+)-h(0-)+9 \int_{0-}^{0+} \int_{-\infty}^{t} h(s) d s d t=-6 \int_{0-}^{0+} \int_{-\infty}^{t} \delta^{\prime}(s) d s d t=-6, \\
h(0-)=0, \quad h(0+)=C_{1}, 9 \int_{0-}^{0+} \int_{-\infty}^{t} h(s) d s d t=0, C_{1}=-6 .
\end{gathered}
$$

The final answer is: $h(t)=-6 \cos 3 t u(t)$.
20. Assume that $f_{1}(x) \neq 0$ for $0 \leq x \leq 4$ and $f_{2}(x) \neq 0$ for $-3 \leq x \leq-1$. From definition of convolution $f_{1}(x) * f_{2}(x)=\int_{-\infty}^{\infty} f_{1}(s) f_{2}(x-s) d s$.

$$
0 \leq s \leq 4 \text {, since } f_{1} \neq 0 \text { when its argument is in this range ; }
$$

$$
-3 \leq x-s \leq-1 \text {, since } f_{2} \neq 0 \text { when its argument is in this range ; }
$$

Combining both inequalities we get $-3 \leq x \leq 3$, which is the answer of the problem, because x is the argument of convolution.
23. Recall that $\delta_{T}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T), n$-integer, $f_{1}(x) * f_{2}(x)=\int_{-\infty}^{\infty} f_{1}(s) f_{2}(x-s) d s$.

Answers: A-2,4; B - none; C - 6; D - 5; E-1,3,8.
Let us consider the general case $A * \delta_{N}(t) * \operatorname{rect}(t * M)=A * \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(\tau-N n) \operatorname{rect}(M *$ $(t-\tau)) d \tau=A * \sum_{n=-\infty}^{\infty} \operatorname{rect}(M *(t-N n)) . A-$ amplitude, N - period, $M-$ time scaling.
$x_{1}: A=1, N=2, M=\frac{1}{2}$. This means that each rectangular function is non-zero over interval of length 2 . Also the period of rect functions is 2 . So they stand side by side of each other without breaks and do not overlap. Since amplitude is 1 , the sum of such rectangular functions is just a line $y=1$, which corresponds to graph E.
$x_{2}: x_{2}=4 * x_{1}$. So the answer is a line $y=4$, which corresponds to graph A.
$x_{3}: A=\frac{1}{4}, N=\frac{1}{2}, M=1 / 2$. This means that each rectangular function is non-zero over interval of length 2 . The period of the functions is $1 / 2$. These functions overlap and exactly 4 rectangular functions cover each point, their value add up to the line $y=4$. After scaling the result with factor of $A=\frac{1}{4}$ we obtain the final result graph E.
$x_{4}: x_{4}=4 * x_{3}$. So the answer is a line $y=4$, which corresponds to graph A.
$x_{5}: A=1, N=2, M=2$. Each rectangular function is non-zero over interval of length $1 / 2$. Also the period of rectangular functions is 2 . This means that there is a space between each 2 functions which is equal to $2-\frac{1}{2}=\frac{3}{2}$. Since amplitude is 1 , the sum of such rectangular functions corresponds to graph D.
$x_{6}: x_{6}=4 * x_{5}$. So the answer is graph C.
$x_{7}: A=\frac{1}{4}, N=\frac{1}{2}, M=2$. Each rectangular function is non-zero over interval of length $1 / 2$. The period of rectangular functions is $1 / 2$, they do not overlap and span the whole domain without breaks. The amplitude is $1 / 4$, the final graph is supposed to be a line $y=\frac{1}{4}$ that does not correspond to any given graph.
$x_{8}: x_{8}=4 * x_{7}$. So the answer is a line $y=1$ or graph E.
27a. The system equation is: $y^{\prime \prime}(t)+a y^{\prime}(t)+b y(t)=x(t)$.
To find the impulse response $h(t)$ we solve $h^{\prime \prime}(t)+a h^{\prime}(t)+b h(t)=\delta(t)$. We start with computing solution of the corresponding homogeneous equation

$$
\begin{gathered}
h_{h o m}^{\prime \prime}(t)+a h_{\text {hom }}^{\prime}(t)+b h_{\text {hom }}(t)=0 . \\
\lambda^{2}+a \lambda+b=0, \quad \lambda_{1,2}=\frac{-a \pm \sqrt{a^{2}-4 b}}{2}, \quad h_{\text {hom }}=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t} .
\end{gathered}
$$

For this equation $h(t)=h_{\text {hom }}(t) u(t)=\left(C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}\right) u(t)$. The stability of the system will be guaranteed if the impulse response is absolutely integrable. This requires real parts of λ to be negative. It will prevent response from growing.

Let us proceed with solving for unknown constants C_{1}, C_{2}. For this purpose we integrate the original equation from $t=0^{-}$to $t=0^{+}$once and twice:

$$
\left\{\begin{array}{c}
h^{\prime}\left(0^{+}\right)-h^{\prime}\left(0^{-}\right)+a h\left(0^{+}\right)-a h\left(0^{-}\right)+b \int_{0-}^{0+} h(t) d t=\int_{0-}^{0+} \delta(t) d t=1, \\
h\left(0^{+}\right)-h\left(0^{-}\right)+a \int_{0-}^{0+} h(t) d t+b \int_{0-}^{0+} \int_{-\infty}^{t} h(s) d s d t=\int_{0-}^{0+} \int_{-\infty}^{t} \delta(s) d s d t=0 .
\end{array}\right.
$$

We notice that all integrals in the left hand sides are equal to zero because the impulse response $h(t)$ does not have singularities. Also, $h\left(0^{-}\right)=h^{\prime}\left(0^{-}\right)=0$ because the only excitation of the system occurs at time $t=0$. Therefore one gets

$$
\left\{\begin{array} { c }
{ h ^ { \prime } (0 ^ { + }) + a h (0 ^ { + }) = 1 , } \\
{ h (0 ^ { + }) = 0 . }
\end{array} \Rightarrow \left\{\begin{array}{l}
h^{\prime}\left(0^{+}\right)=1, \\
h\left(0^{+}\right)=0 .
\end{array}\right.\right.
$$

One needs to be careful evaluating $h\left(0^{+}\right), h^{\prime}\left(0^{+}\right)$considering complex or real $\lambda_{1,2}$. Values of parameters are set to be $a=0.5, b=-0.1, \lambda_{1}=0.1531, \lambda_{2}=-0.6531$. Because of the λ_{1} we already expect system to be unstable. Substituting those values we get
$h\left(0^{+}\right)=C_{1}+C_{2}=0, h^{\prime}\left(0^{+}\right)=0.1531 C_{1}-0.6531 C_{2}=1, \Rightarrow C_{1}=1.2404, C_{2}=-1.2404$.
$h(t)=1.2404\left(e^{0.1531 t}-e^{-0.6531 t}\right) u(t)$.

$$
\int_{-\infty}^{\infty}|h(t)| d t=1.2404 \int_{0}^{\infty}\left(e^{0.1531 t}-e^{-0.6531 t}\right) d t=\infty . \text { Not BIBO stable. }
$$

If we redefine the response such that real parts of λ are all negative, system will be stable. For example, pair $a=0.5, b=1$ would determine a stable system.

27b. The system equation is: $y^{\prime \prime}(t)+a y^{\prime}(t)+b y(t)=x^{\prime \prime}(t)$.
To find the impulse response $h(t)$ we solve $h^{\prime \prime}(t)+a h^{\prime}(t)+b h(t)=\delta^{\prime \prime}(t)$. The homogeneous solution is the same as in Part a. However the impulse response will contain additional term

$$
h(t)=h_{\text {hom }}(t) u(t)+C \delta(t)=\left(C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}\right) u(t)+C \delta(t)
$$

since in this problem the orders of highest derivatives of left and right hand sides of the equation coincide. In order to determine three constants C, C_{1}, C_{2} the original equation is integrated three times from $t=0^{-}$to $t=0^{+}$:

$$
\left\{\begin{array}{c}
h^{\prime}\left(0^{+}\right)-h^{\prime}\left(0^{-}\right)+a h\left(0^{+}\right)-a h\left(0^{-}\right)+b \int_{0-}^{0+} h(t) d t=\delta^{\prime}\left(0^{+}\right)-\delta^{\prime}\left(0^{-}\right)=0 \\
h\left(0^{+}\right)-h\left(0^{-}\right)+a \int_{0-}^{0+} h(t) d t+b \int_{0-}^{0+} \int_{-\infty}^{t} h(s) d s d t=\delta\left(0^{+}\right)-\delta\left(0^{-}\right)=0 \\
\int_{0-}^{0+} h(t) d t+a \int_{0-}^{0+} \int_{-\infty}^{t} h(s) d s d t+b \int_{0-}^{0+} \int_{-\infty}^{t} \int_{-\infty}^{s} h(w) d w d s d t=\int_{0-}^{0+} \delta(t) d t=1 .
\end{array}\right.
$$

We notice that all double and triple integrals in the left hand sides are equal to zero because the impulse response $h(t)$ has $\delta(t)$ singularity and it disappears after first integration. Also, $h\left(0^{-}\right)=h^{\prime}\left(0^{-}\right)=0$ because the only excitation of the system occurs at time $t=0$. Therefore one gets

$$
\left\{\begin{array} { c }
{ h ^ { \prime } (0 ^ { + }) + a h (0 ^ { + }) + b \int _ { 0 - } ^ { 0 + } h (t) d t = 0 , } \\
{ h (0 ^ { + }) + a \int _ { 0 - } ^ { 0 + } h (t) d t = 0 , } \\
{ \int _ { 0 - } ^ { 0 + } h (t) d t = 1 . }
\end{array} \quad \Rightarrow \left\{\begin{array}{c}
h^{\prime}\left(0^{+}\right)=b-a^{2} \\
h\left(0^{+}\right)=-a \\
\int_{0-}^{0+} h(t) d t=1
\end{array}\right.\right.
$$

The bottom equation in the system defines $C=1$. Again, values of parameters are set to be $a=0.5, b=-0.1, \lambda_{1}=0.1531, \lambda_{2}=-0.6531$.

$$
\left\{\begin{array}{c}
h^{\prime}\left(0^{+}\right)=-0.35 \\
h\left(0^{+}\right)=-0.5 .
\end{array}\right.
$$

$h\left(0^{+}\right)=C_{1}+C_{2}=-0.5, h^{\prime}\left(0^{+}\right)=0.1531 C_{1}-0.6531 C_{2}=-0.35, \Rightarrow C_{1}=-0.8392, C_{2}=0.3392$. $h(t)=\left(-0.8392 e^{0.1531 t}+0.3392 e^{-0.6531 t}\right) u(t)+\delta(t)$. Again, system is BIBO unstable.
28. The system equation is: $y^{\prime \prime}(t)+\frac{2}{3} y^{\prime}(t)+\frac{1}{8} y(t)=x(t)$. We let $x(t)=\delta(t)$ to find the impulse response $h(t)$.

The homogeneous solution of this equation is $h_{\text {hom }}(t)=e^{-\frac{t}{3}}\left(C_{1} \sin \frac{t}{6 \sqrt{2}}+C_{2} \cos \frac{t}{6 \sqrt{2}}\right)$.

The impulse response accordingly has the form $h(t)=e^{-\frac{t}{3}}\left(C_{1} \sin \frac{t}{6 \sqrt{2}}+C_{2} \cos \frac{t}{6 \sqrt{2}}\right) u(t)$.
Integrating equations once and twice from $t=0^{-}$to $t=0^{+}$one gets equations

$$
\left\{\begin{array}{c}
h^{\prime}\left(0^{+}\right)-h^{\prime}\left(0^{-}\right)+\frac{2}{3}\left[h\left(0^{+}\right)-h\left(0^{-}\right)\right]+\frac{1}{8} \int_{0-}^{0+} h(t) d t=\int_{0-}^{0+} \delta(t) d t=1, \\
h\left(0^{+}\right)-h\left(0^{-}\right)+\frac{2}{3} \int_{0-}^{0+} h(t) d t+\frac{1}{8} \int_{0-}^{0+} \int_{-\infty}^{t} h(s) d s d t=\int_{0-}^{0+} \int_{-\infty}^{t} \delta(s) d s d t=0 .
\end{array}\right.
$$

Note that all integrals in the left hand sides are equal to zero because solution $y(t)$ does not have impulses in it. Terms computed at $t=0^{-}$are equal to zero as well, since solution is equal to zero for all negative t 's.

$$
\left\{\begin{array} { c }
{ h ^ { \prime } (0 ^ { + }) + \frac { 2 } { 3 } [h (0 ^ { + })] = 1 , } \\
{ h (0 ^ { + }) = 0 . }
\end{array} \Rightarrow \left\{\begin{array}{l}
h^{\prime}\left(0^{+}\right)=1, \\
h\left(0^{+}\right)=0 .
\end{array}\right.\right.
$$

We evaluate $h\left(t=0^{+}\right)=C_{2}=0$, then $h^{\prime}\left(t=0^{+}\right)=C_{1} * \frac{1}{6 \sqrt{2}}=1, C_{1}=6 \sqrt{2}$. The impulse response of the system is equal to $h(t)=6 \sqrt{2} \mathrm{e}^{-\frac{\mathrm{t}}{3}} \sin \frac{t}{6 \sqrt{2}} u(t)$.

Stability check: System is BIBO stable if its impulse response is absolutely integrable. Let us check this condition

$$
\int_{-\infty}^{\infty}|h(t)| d t=\int_{0}^{\infty} 6 \sqrt{2} \mathrm{e}^{-\frac{\mathrm{t}}{3}}\left|\sin \frac{t}{6 \sqrt{2}}\right| d t \leq 6 \sqrt{2} \int_{0}^{\infty} \mathrm{e}^{-\frac{\mathrm{t}}{3}} d t=18 \sqrt{2}<\infty
$$

Conclusion: system is BIBO stable. Note that the same result one can get investigating the eigenvalues of the original equation. One can calculate them $\lambda_{1,2}=-0.3333 \pm 0.1179 i$ and notice that their real parts are negative which means that system is BIBO stable.

32a.

