Homework 6

Problem 33. Excitation of the system and its response are given

$$
x(t)=4 \operatorname{rect}(t / 2), y(t)=10\left[\left(1-e^{-(t+1)}\right) u(t+1)-\left(1-e^{-(t-1)}\right) u(t-1)\right]
$$

We know that response is equal to the convolution of excitation and impulse response
$y(t)=x(t) * h(t)$ or in Fourier space $Y(f)=X(f) H(f)$, where convolution in time domain is 'equivalent' to usual multiplication in frequency domain. We can calculate $X(f), Y(f)$. Then $H(f)=Y(f) / X(f)$ and the impulse response $h(t)$ will be the inverse Fourier transform of $H(f)$.

Step\#1. $X(f)=4 \cdot 2 \cdot \operatorname{sinc}(2 f)=8 \operatorname{sinc}(2 f)$ (Formulas page 369-371)

$$
Y(f)=10 F\left(\left[1-e^{-t}\right] u(t)\right) \cdot\left[e^{2 \pi f j}-e^{-2 \pi f j}\right] \text {, here } F \text { denotes Fourier transform. }
$$

$$
F\left(\left[1-e^{-t}\right] u(t)\right)=\frac{1}{2} \delta(f)+\frac{1}{2 \pi f j}-\frac{1}{1+2 \pi f j}=\frac{1}{2} \delta(f)+\frac{1}{2 \pi f j} \cdot \frac{1}{1+2 \pi f j} \quad \text { Then }
$$

$$
Y(f)=10\left[\frac{1}{2} \delta(f)+\frac{1}{2 \pi f j} \cdot \frac{1}{1+2 \pi f j}\right] \cdot 2 j \sin (2 \pi f j)=\frac{20 j \sin (2 \pi f j)}{2 \pi f j} \frac{1}{1+2 \pi f j}=20 \operatorname{sinc}(2 f) \cdot \frac{1}{1+2 \pi f j}
$$

$$
H(f)=\frac{Y(f)}{X(f)}=20 \operatorname{sinc}(2 f) \cdot \frac{1}{1+2 \pi f j} \cdot \frac{1}{8 \operatorname{sinc}(2 f)}=2.5 \frac{1}{1+2 \pi f j}
$$

Step\#2. We need to find the inverse Fourier transform of $H(f)=2.5 \frac{1}{1+2 \pi f j}$. Formulas on pages 369-371 suggest $h(t)=2.5 e^{-t} u(t)$, this is the impulse response of the system.

Problem 34b. $g(t)=4\left[\delta_{4}(t+1)-\delta_{4}(t-3)\right]$. One can observe that $\delta_{4}(t+1)=\delta_{4}(t-3)$ and $g(t)=0$ since period of each function is 4 . However, let us go to Fourier space and check if we indeed get zero.

$$
\begin{array}{r}
G(f)=4 F\left(\delta_{4}(t)\right) \cdot\left[e^{-2 \pi f j}-e^{6 \pi f j}\right]=\frac{4}{4} \delta_{\frac{1}{4}}(f)\left[e^{-2 \pi f j}-e^{6 \pi f j}\right]=\delta_{\frac{1}{4}}(f) \cdot\left[e^{-2 \pi f j}-e^{6 \pi f j}\right] \\
=\sum_{n=-\infty}^{\infty} \delta\left(f-\frac{n}{4}\right) \cdot\left[e^{-2 \pi f j}-e^{6 \pi f j}\right]=\sum_{n=-\infty}^{\infty}\left[e^{-\frac{\pi n j}{2}}-e^{\frac{3 \pi n j}{2}}\right]=\sum_{n=-\infty}^{\infty} 0=0
\end{array}
$$

So the magnitude and phase are constant zeros.
Problem 34c. $g(t)=u(2 t)+u(t-1)$ First, we notice that $u(2 t)=u(t)$ and $g(t)=u(t)+$ $u(t-1)$

$$
G(f)=F(u(t)) \cdot\left[1+e^{-2 \pi f j}\right]=\left[\frac{1}{2} \delta(f)+\frac{1}{2 \pi f j}\right] \cdot\left[1+e^{-2 \pi f j}\right]=\delta(f)+\frac{1+e^{-2 \pi f j}}{2 \pi f j}
$$

Clearly at $f=0$ the value of $G(f)$ is infinite, one can observe this from the fact that the total area of the signal in the time-domain is infinite.


```
Matlab code:
clear all
close all
clc
f=-5:0.1:5; % frequency range
y=dirac(f)+1/2/i/pi./f.*(1+cos(2*pi*f)-i*sin(2*pi*f)); % Fourier image
subplot(1,2,1)
plot(f,abs(y),'-')
title('|G(f)|')
xlabel('f')
ylabel('Magnitude of G(f)')
subplot(1,2,2)
plot(f,angle(y))
title('Phase of G(f)')
xlabel('f')
ylabel('Phase of G(f)')
```

Problem 39a. $x_{1}(t) \leftrightarrow X_{1}(f), x_{2}(t)=x_{1}(t+4)$, then from Formulas on page 369-371 $X_{2}(f)=X_{1}(f) \cdot e^{8 \pi f j}$. Magnitude of the latter factor is one $\left|e^{8 \pi f j}\right|=1,\left|X_{1}(f)\right|=\left|X_{2}(f)\right|$

Problem 39b. $x_{1}(t) \leftrightarrow X_{1}(f), x_{2}(t)=x_{1}(t / 5)$, then from Formulas on page 369-371
$X_{2}(f)=5 X_{1}(5 f)$. The maximum value of $\left|X_{1}(f)\right|$ is equal to the maximum value of $\left|X_{1}(5 f)\right|$. According to this, $\max \left|X_{2}(f)\right|=5 \max \left|X_{1}(f)\right|$

Problem 39c. CTFT of $x(t)$ has the value of $e^{-\frac{j \pi}{4}}$ at a frequency $f=20$. We can assume that signal $x(t)$ is real-valued. Then from the definition of Fourier transform

$$
\begin{gathered}
X(20)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi 20 t} d t=\left(\int_{-\infty}^{\infty} x(t) e^{j 2 \pi 20 t} d t\right)^{*}=X^{*}(-20) \\
X(-20)=X^{*}(20)=e^{\frac{j \pi}{4}}, \text { here }()^{*} \text { stands for conjugate. }
\end{gathered}
$$

However, if we do not consider $x(t)$ to be purely real, the answer cannot be given based only on the given data, more information is needed.

Problem 47. $A=-B=1, t_{1}=1, t_{2}=2$. Then we can express the function $x(t)$ as $x(t)=\operatorname{rect}\left(\frac{t}{4}\right)-2 \operatorname{rect}\left(\frac{t}{2}\right)$, and then $X(f)=4 \operatorname{sinc}(4 f)-4 \operatorname{sinc}(2 f)$.

Matlab code:

```
clear all
close all
clc
f=-5:0.1:5;
y=4*sin(pi*4*f)./f/pi/4 -4*sin(pi*2*f)./f/pi/2;
subplot(1,2,1)
plot(f,abs(y),'-')
title('|G(f)|')
xlabel('f')
ylabel('Magnitude of G(f)')
subplot(1,2,2)
plot(f,angle(y))
title('Phase of G(f)')
xlabel('f')
```

ylabel('Phase of $G(f)$ ')
Problem 48. $x_{1}=10 \operatorname{sinc}(20 t), x_{2}=5 \cos (2000 \pi t), y(t)=x_{1}(t) \cdot x_{2}(t)$.
Then in Fourier space $Y(f)=X_{1}(f) * X_{2}(f)$. Again, using Formulas on pages 369-371
$X_{1}(f)=10 \cdot \frac{1}{20} \cdot \operatorname{rect}\left(\frac{f}{20}\right), \quad X_{2}(f)=5 \cdot \frac{1}{2} \cdot[\delta(f-1000)+\delta(f+1000)]$.

Matlab code:

```
% defining function that computes rect(t)
function y = rect(t)
y=heaviside (t+0.5)-heaviside(t-0.5);
end
clear all
close all
clc
f1=linspace(-15,15);
x1=1/2*rect(f1/20);
plot(f1,abs(x1),'-O')
title('|X1(f)|')
xlabel('f')
ylabel('Magnitude of X1(f)')
```

$Y(f)=\int_{-\infty}^{\infty} \frac{1}{2} \operatorname{rect}\left(\frac{f-s}{20}\right) \cdot \frac{5}{2} \cdot[\delta(s-1000)+\delta(s+1000)] d s=\frac{5}{4}\left[\operatorname{rect}\left(\frac{f-1000}{20}\right)+\right.$ $\left.\operatorname{rect}\left(\frac{f+1000}{20}\right)\right]$

Locations of the rect functions are centered at $f=-1000, f=1000$ with height 1.25.

Matlab code:

```
function y = rect(t)
y=heaviside (t+0.5)-heaviside(t-0.5);
end
clear all
close all
clc
f1=[-1020:1:-980]; % location of the first rectangular
y1=5/4*(rect(f1/20-50)+rect(f1/20+50));
subplot(1,2,1)
plot(f1,abs(y1),'-o')
title('Magintude of Y(f)')
xlabel('f')
ylabel('|Y(f)|')
f2=[980:1020]; % location of the second rectangular
y2=5/4* (rect (f2/20-50) +rect (f2/20+50));
subplot(1,2,2)
```

```
plot(f2,abs(y2),'-o')
title('Magnitude of Y(f)')
xlabel('f')
```

In simple words, mixer is producing the signal with frequencies equal to the sum and difference of the corresponding frequencies of 2 input signals.

Problem 49. $h(t)=A\left[u(t)-u\left(t-t_{0}\right)\right]$. We want to reject 60 Hz and all its harmonics. Let us look at the Fourier transform of the impulse response
$H(f)=A F(u(t)) \cdot\left[1-e^{-2 \pi f j t_{0}}\right]=A\left(\frac{1}{2} \delta(f)+\frac{1}{2 \pi f j}\right) \cdot\left[1-e^{-2 \pi f j t_{0}}\right]=\frac{A}{2 \pi f j}\left[1-e^{-2 \pi f j t_{0}}\right]$
We need $H(f)=0, f=60,120,180, \ldots$ This is possible when $\left[1-e^{-2 \pi f j t_{0}}\right]=0$, or in other words $2 \pi f t_{0}=2 \pi n$ where n is integer. Letting $t_{0}=\frac{1}{60}$ we will exclude all desired harmonics.

