Continuous-time Signals

(AKA analog signals)



I. Analog* Signals review

Goals:
-Common test signals used in system analysis

- Signal operations and properties:
scaling, shifting, periodicity, energy and power

*Analog = the argument ¢ (time) of the signal g(¢) is
continuous (CT). Also known as CT signals.



The Unit Step function
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Note: The signal is discontinuous at zero but is an analog signal

Note: The product signal g(t)u(t) for any g(t) can be thought of as
the signal g(t) “turned on” at time t = 0.

Used to check how a system responds to a “sudden” input



The Signum Function
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The Unit Rectangle function
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The product g(¢)rect(t) can be understood as the signal

turned on at z=_% and turned off at t=%



The Unit Ramp function
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The Unit Ramp function is unbounded with time



Unit Triangle function
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The triangle signal is related to the rectangle
through an operation called convolution

(to be introduced later...)



The Impulse function

The impulse function is not a function in the ordinary
sense because its value at zero is not a real value
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It is represented by a vertical arrow
The impulse function is unbounded and discontinuous




Creating an Impulse

An impulse can be defined as the limit of the
rectangle function with unit area as a goes to zero
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Other approximations are possible...
for example, we can use a triangle function



The Unit Sinc function

The unit sinc function

| sin(rt)
is related to the unit sinc(r) - -
rectangle function
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Real exponentials

Real exponentials with positive exponents
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Sinusoids (and Cosinusoids)
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Real and complex sinusoids

Recall that a complex number is defined as z=a+ jb
(here Re(z)=a Im(z)=b and j=+/-1)

A complex sinusoid is expressed as
A graphical example for w =27 :
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Analog signals review

Goals:
- Common test signals used in system analysis

- Signal operations and properties:
shifting, scaling, periodicity, energy and power
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Signal operations: shifting and scaling

Amplitude scaling g(¢)— Ag(¢)
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Signal operations: shifting and scaling

Time shifting
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Signal operations: shifting and scaling

Time scaling t—=t/a
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Example: Doppler effect

Sound heard by firefighters: g(t)
Sound we hear when truck comes: A(t) g(at), A increasing, a>1
Sound we hear when truck goes: B(t) g(bt), B decreasing, b<1

V/Vs = 0.6

Checkout the website:

http://www.lon-capa.org/~mmp/applist/doppler/d.htm




Signal operations: shifting and scaling

A signal may be expressed by means of basic test
signals that have been time-scaled and amplified
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Signal operations: shifting and scaling

Caution! The impulse satisfies special properties

Time-scaling property
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Sampling property

fg S(t-1,)dt=g(1,)

The impulse function
is not a function in the ordinary sense



Signhal properties: periodic signhals

Periodic signals repeat
x(t+kT)=x(t)

Cycle time is the period T
Here about 1 second
2 seconds is also a period

Signal magnitude (units)
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We only need define the signal

over one period and we know ¥
everything about it 04l

-0.
Sinusoids and constant are clearly
periodic signals

Other examples include periodic
pulses (rectangular and
triangular pulses)
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Signal properties: periodic signals

The sum of two periodic signals
x(t) = x,(t)+ x,(1)
with periods 7, and T, is:

a,

T =22
2 b2

. T . .
- periodic when —is rational. If T} =

4
then the period is b

7 LCM(a,,a,)
GCD(b,,b,)

L T
- not periodic when 7 is irrational
2



Signal energy and power

Quantifying the “size” of a signal is important in
many applications: How much electricity can be
used in a defibrillator? How much energy should an
audio signal have to be heard?

The energy of the signal x(¢)is |E, = f\x(t)\zdt
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Signal energy and power

Some signals have infinite energy. In that case, we
may use the concept of average signal power

For a periodic signal, x(¢), with period T, the average

signal power is
1
- ?fT‘X(t)zdt

If the signal is not periodic, then
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Analog signals summary
We have seen:
-Signals can be seen as inputs/outputs to systems

-Analog signals can be represented as functions of
continuous time

-The unit step, impulse, ramp and rectangle functions are
examples of test signals to systems

-A general signal can be expressed as a combination of some
basic test signals by using scaling/shifting operations

-Properties of signals include periodicity, even/odd,
continuity, differentiability, etc

-Power and energy are concepts that measure signal “size”



