
Continuous-time S ystems

 (AKA analog systems)

Recall course objectives

Main Course Objective:
Fundamentals of systems/signals interaction

(we’d like to understand how systems transform or affect signals)

Specific Course Topics:
-Basic test signals and their properties
-Systems and their properties
-Signals and systems interaction

Time Domain: convolution
Frequency Domain: frequency response

-Signals & systems applications:
audio effects, filtering, AM/FM radio

-Signal sampling and signal reconstruction

II. CT systems and their properties

Goals

I. A first classification of systems and their models:

 A. Operator Systems: maps that act on signals
 B. Physical Systems: examples and ODE models

II. Classification of systems according to their properties:

 Homogeneity, time invariance, superposition, linearity,
memory, BIBO stability, controllability, invertibility, …

Systems

Systems accept excitations or input signals and
produce responses or output signals

Systems are often represented by block diagrams

SISO system

MIMO system

SISO = single input, single output
MIMO = multiple input, multiple output

Operator systems acting on signals
Systems can be “operators” or “maps” that combine signals

This is a more usual situation in the “digital world.” However
some analog systems can also be described through maps

Examples:
1-Algebraic operators

 -noise removal by averaging
-motion detection through image subtraction

2-Geometric/point operators (interpolation)
-image rectification
-visual spatial effects: morphing, image transformation
-cartography: maps of ellipsoidal/spherical bodies

3-Signal multiplication:
- AM radio signal modulation before transmission

However, simple operations like these are not enough to capture all
filtering effects on signals (more on this later)

Noise* removal by averaging
 Original signal

Noisy versions of the signal (noise is zero mean)

Period of underlying signal Averaged signal
must be known or estimated

Matlab script in webpage: averaging.m

(*) noise = infinite-energy signal
 that takes random values

!

+

!

x(t) + n1(t)

!

x(t) + n2(t)

!

x(t) + n3(t)

!

x(t) +

ni(t)
i
"
3

Motion detection by subtraction

(this is a digital system example: here image signals are a function of
discrete-space variables or pixels)

!

"

!

A0(x,y)

!

A1(x,y)

!

A1(x,y)

!

A0(x,y)

!

"

Geometric/point operators

E.g., fish-eye lenses (used in robotics) distort reality

input-output
test using a known
image for camera
calibration

 (we’d like to find :

)

 correction
of a real image
using the inferred

!

A(x,y)

!

B(x,y)

!

f

!

f

!

f

!

"

!

"

!

f

!

f "1

Signal multiplication

AM signal modulation for signal transmission
(used in AM radio)

!

x(t)

!

x(t)cos("ct)

!

cos("ct)
!

"

II. CT systems and their properties

Goals

I. A first classification of systems and their models:

 A. Operator Systems: maps that act on signals
 B. Physical Systems: ODE models and examples

II. Classification of systems according to their properties:

 Homogeneity, time invariance, superposition, linearity,
memory, BIBO stability, invertibility, controllability

ODEs and state-space system models

!

d n y(t)

dt n
+ a1

d n"1y(t)

dt n"1
+ ... + an"1

dy(t)
dt + an y(t) = b0

d mU (t)

dtm
+ ... + bm"1

dU (t)
dt + bmU (t)

 dimensional ODEs(*) model many electro-mechanical systems

The coefficients can be time-varying or constant.
When independent of y(t), ODE is linear, otherwise
ODE is nonlinear

!

ai,bi

We will typically consider for
To solve the ODE we need to fix some initial conditions

(*) the unknowns are the y(t) and its derivatives

!

bi = 0

!

n

!

y(t0),
dy
dt
(t0),

d2y
dt 2

(t0),...,
dn"1y
dtn"1

(t0)!

i = 0,...,m "1

ODEs and state-space system models

Given:

Inputs: linear combination of U(t) and derivatives
(represent known variables, e.g., forces in a Mech. System)

Outputs: linear combination of y(t) and/or its derivatives
(represent unknown variables we would like to determine)

When coefficients are independent of y(t), the output equations
are linear; otherwise, they are nonlinear

!

d n y(t)

dt n
+ a1

d n"1y(t)

dt n"1
+ ... + an"1

dy(t)
dt + an y(t) = b0

d mU (t)

dtm
+ ... + bm"1

dU (t)
dt + bmU (t)

!

zl (t) = cl ,0
d n y(t)
dt n

+ ... + cl ,n"1
dy(t)
dt + cl ,n y(t)

!

l = 1, ..., n

Physical Systems (mechanical)

Newtonian motion

 Input U(t)
 Output: y(t)
 Initial conditions y(t0), y'(t0)

Second-order linear system

Force U(t)

Distance y(t)

Resistance kfy'(t)

!

M d2y(t)
dt 2

= "k f
dy(t)
dt

+U(t)

d2y(t)
dt2 +

k f
M

dy(t)
dt

=
1
M

U (t) , y(t0), ʹ′ y (t0)

!

F" = ma

!

"# = Ia

Physical Systems (mechanical)

Mass-spring-damper

Input U(t)
Outputs y(t), y’(t), or combination
Initial conditions y(t0), y'(t0)

Second-order linear system

M

D K

U(t)

y(t)

!

M d2y(t)
dt 2

+ D dy(t)
dt

+ Ky(t) =U(t)

d2y(t)
dt2 +

D
M

dy(t)
dt

+
K
M

y(t) =
1
M

U(t), y(t0), ʹ′ y (t0)

Physical Systems (mechanical)

Simple pendulum

I=ML2, moment of inertia
Input (force at the ball) U(t)
Output θ(t)
Initial conditions θ(t0), θ'(t0)

Second-order nonlinear system (why?)

Simulink script in webpage: PendulumWithoutDamping.mdl

L

U(t)

θ(t)

M Mg sin θ(t)
!

I d
2"(t)
dt 2

= LU(t) #MgLsin(")

!

d2"(t)
dt 2

+
g
L
sin(") =

1
ML

U(t)

!

"(t0), # " (t0)

Physical Systems (electrical)

Kirchhoff’s laws
Current law:

sum of (signed) currents at a “node” is zero
(node=electrical juncture of two or more devices)

Voltage law:
sum of (signed) voltages around a “loop” is zero
(loop=closed path passing through ordered sequence of nodes)

Circuit element laws:
Resistor:

Capacitor:

Inductor:
!

iR =VR

!

i = C dV
dt

!

V = L di
dt

Physical Systems (electrical)

Objective: Find a model relating
the input and output

2 nodes and 2 loops
Equation of upper node:
Equation of left loop:
Equation of right loop:

Circuit element equations:

Putting it all together:

!

i

!

VC

!

i1

!

i2

!

i " i1 " i2 = 0

!

V +V1 = 0

!

"V1 +VC = 0

!

V1 = i1R

!

C dVC
dt

= i2

!

i = i2 + i1

!

i = C dVC
dt

+
1
R
V1

!

C dVC
dt

+
1
R
VC = i

!

i

!

VC

 ODEs and state-space models

A state-space representation of an nth order ODE describing a
physical system is obtained as follows:

State

The state-space representation of the system is a system
of first-order differential equations in the new variables

If the original nth order ODE is linear, then the state-space
representation can be expressed in matrix form:

A linear output equation is expressed as ,
This can be generalized for several variables

!

x = x1, x2, x3, ..., xn()T = y, dy
dt
, d2y

dt 2
, ..., dn"1y

dtn"1

$
%

&

'
(

T

!

A =

0 1 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1

"an1 "an"1 "an"2 ... "a1

$

%
%
%
%
% %

&

'

(
(
(
(
((

!

B =

0
0
...
0
bm

"

$
$
$
$
$ $

%

&

'
'
'
'
' '

!

dx
dt

= Ax + Bu,

!

x(t0)

!

z = Cx

!

x1, x2, x3, ..., xn

!

C = (cl ,k)

Why state-space models are used

State-space formulation allows
to lump multiple variables in
a single state vector

Distillation column:
Hundreds of state variables

Concentration and temp at each
tray position
Lots of structure

Output of one tray is the
input to the next

Several inputs
Boiler power, reflux ratio,

feed rate
Many outputs

Some tray temperatures,
final concentration

!

x

Why state-space models are used

Well suited for MIMO systems

MIMO and SISO systems
have same form in
state-space formulation

This allows for uniform
treatment
• Analysis of system

properties
• Linearization
• Simulation (matlab,

simulink)

f1(t)f2(t)

v1(t)v2(t)

d(t)

!

˙ x 1(t)
˙ x 2(t)
˙ x 3(t)

"

$
$ $

%

&

'
' '

=

(k f 1
M1

0 0

0
(k f 2
M2

0

(1 1 0

"

$
$
$
$
$
$ $

%

&

'
'
'
'
'
' '

x1(t)
x2(t)
x3(t)

"

$
$ $

%

&

'
' '

+

M1
(1

0
0

0
M2
(1

0

"

$
$
$

%

&

'
'
'

f1(t)
f2(t)

"

$

%

&
'

v1(t)
v2(t)
d(t)

"

$
$ $

%

&

'
' '

=

1 0 0
0 1 0
0 0 1

"

$
$ $

%

&

'
' '

x1(t)
x2(t)
x3(t)

"

$
$ $

%

&

'
' '

Why do we linearize about equilibrium points?

Unfortunately, there are no general formulas to solve
nonlinear ODEs. Then we are forced to look for (1)
particular solutions and (2) approximations to the solutions

How can we find particular solutions to nonlinear ODEs?
Equilibrium points are always particular constant solutions

How to approximate the solutions of a nonlinear ODE?
(a) We know how to solve linear ODEs

 (b) The qualitative behavior of a nonlinear ODE with an
initial condition close to an equilibrium point, under inputs of
small magnitude, can be found by solving the linearized
equation about that equilibrium point with zero inputs

Linearization about equilibrium point

An equilibrium point is such that

Equilibrium point = constant solution to ODE
The system remains at rest at all times if initially
placed at the equilibrium and no inputs are applied

Pendulum example. The state is The
pendulum has two equilibrium points:

 (vertical bottom position, zero velocity)

 (vertical top position, zero velocity)!

x = (", # ")T

!

x1 = (0,0)T

!

x2 = (" ,0)T

!

dx
dt

= f (x,u),

!

f (x0,0) = 0

!

x0

!

x(t0),

Linearization is easy in state-space formulation

Suppose the map is nonlinear
(as in the pendulum example)

Linearization of the system about with is:

with constant matrices

!

f :Rn " Rm # $ # Rn

!

dx
dt

=
"f
"x

$
%

&

'
(
|x= x0,u= 0

(x) x0) +
"f
"u

$
%

&

'
(
|x= x0 ,u= 0

u,

!

x(t0)
!

x0

!

u = 0

!

"f
"x

$
%

&

'
(
|x=x0 ,u=0

=

"f1
"x1

... "f1
"xn

...
"fn
"x1

... "fn
"xn

$

%
%
%
% %

&

'

(
(
(
((
|x=x0 ,u=0

!

"f
"u

$
%

&

'
(
|x=x0,u=0

=

"f1
"u
...
"fn
"u

$

%
%
%
%

&

'

(
(
(
(
|x=x0,u=0

Linearization with additional output map

For systems with an additional nonlinear output map:

where , linearization becomes:
!

z = h(x),

!

dx
dt

= f (x,u),

!

x(t0),

!

h :Rn " # " Rp

!

dx
dt

=
"f
"x

$
%

&

'
(
|x= x0,u= 0

(x) x0) +
"f
"u

$
%

&

'
(
|x= x0 ,u= 0

u,

!

z =
"h
"x

$
%

&

'
(
|x= x0,

(x) x0)

!

h(x0) = 0,

CT systems and their properties

Goals

I System examples and their models e.g. using basic principles

 A. Operator systems: maps that act on signals

 B. Physical systems: ODE models and examples

II System properties

 Homogeneity, time invariance, superposition, linearity,
memory, invertibility, BIBO stability, controllability

 Response of a RC Low-pass filter

An RC low-pass filter is a simple circuit

It can be modeled as a SISO system

The system is excited by a voltage and
responds with a voltage

Circuit might have initial voltage at capacitor!

vin (t)

!

vout (t)

!

vout (0)

Response of a RC Low-pass filter

If excited by a step voltage

Resp onds with

Unless otherwise said, by ‘response’ we mean ‘zero-
state response’

If the excitation is doubled, (zero-state) response doubles

!

vout (t) = vout (0)e
" t /RCu(t)

zero" input
1 2 4 4 3 4 4

+ A(1" e" t /RC)u(t)
zero"state

1 2 4 4 3 4 4
!

vin (t) = Au(t)

Homogeneity

In a homogeneous system, multiplying the excitation by any
constant (including complex constants), multiplies the response by
the same constant

Homogeneity Test:
 1) apply arbitrary input and obtain output,
 2) then apply and obtain its output,

If then the system is homogeneous

 If g(t) H! "! y1 t()and K g(t) H! "! K y1 t()#H is Homogeneous
!

g(t)

!

y1(t)

!

Kg(t)

!

h(t)

!

h(t) = Ky1(t)

Time invariance

If an excitation causes a response and delaying the excitation
simply delays the response by the same amount of time,
then the system is time invariant

 If g(t) H! "! y1 t()and g(t # t0) H! "! y1 t # t0()$H is Time Invariant

This test must succeed for any g and any t0 .

Additivity property

If one excitation causes a response and another excitation causes
another response and the sum of the two excitations causes a
response which is the sum of the two responses, the system is said
to be additive

If g(t) H! "! y1 t()and h(t) H! "! y2 t()
and g t() + h t() H! "! y1 t() + y2 t()#H is Additive

Linearity and LTI systems

If a system is both homogeneous and additive, it is
linear

If a system is both linear and time-invariant, it is
called an LTI (linear, time-invariant) system

Some systems which are nonlinear can be accurately
approximated for analytical purposes by a linear
system for small excitations (recall the discussion
on linearization)

We will mainly focus on LTI systems because we can
characterize their response to any signal

System Invertibility

A system is invertible if unique excitations produce unique
responses

In an invertible system, knowledge of the response is sufficient
to determine the excitation

Any system with input and output described by a linear
ODE of the form

is invertible.

A system with input and output described by the
operator map is non-invertible because sin(U) does
not have an inverse.

!

d n y(t)

dt n
+ a1

d n"1y(t)

dt n"1
+ ... + an"1

dy(t)
dt + an y(t) = U (t)!

U(t)

!

y(t)

!

z(t) = sin(U(t))

!

U(t)

!

z(t)

Memory

This concept reflects the extent to which the present behavior of
a system (its outputs) is affected by its past (initial
conditions or past values of the inputs)

Physical systems modeled through ODEs have memory: this is
associated with the system inability to dissipate energy or
redistribute it instantaneously

Example: Think about how a pendulum initially off the
vertical winds down to the equilibrium position. The time it
takes to do it captures the pendulum memory

If a system is well understood then one can relate its memory
to specific properties of the system (e.g. “system stability”)

In fact, all filtering methods in signal processing are based on
exploiting the memory properties of systems

Memory

A system is said to be memoryless if for any time
the output at depends only on the input at time

Example:
If y(t) = K u(t), then the system is memoryless
If y(t) = K u(t-1), then it has memory

(Operator systems described through static maps are
usually memoryless)

Any system that contains a derivative in it has
memory; e.g., any system
described through an ODE

!

t1

!

t1

!

t1

Stability

Any system for which the response is bounded for any arbitrary
bounded excitation is said to be bounded-input-bounded-
output (BIBO) stable system, otherwise it is unstable

Intuition: All systems for which outputs “do not explode” (i.e.
outputs can only reach finite values) are BIBO stable.
Intuitively, if a system has a “small memory” or “dissipates
energy quickly,” then it will be stable.

If an ODE describing the system is available, then we can apply
the following test for BIBO stability
A system described by a differential equation is stable if the
eigenvalues of the solution of the equation all have negative
real parts

Stability

Stable systems return to equilibrium despite input disturbances

How to check Stability when ODEs available

Suppose a state-space model for the physical system is
available

Then, the system is stable if and only if the eigenvalues of the
matrix (= the eigenvalues of the ODE) have all negative
real parts

The eigenvalues of are the solutions to the equation

Here, is the dimension of the state

!

dx
dt

= Ax + Bu,

!

x(t0)

!

det("In # A) = 0
!

A

!

A

!

"

!

n

!

x

How to check Stability when ODEs available

Simple example: Low-pass filter

ODE:

state-space representation:

Matrix is just a number:

Calculation of eigenvalues:

Thus, the system is BIBO stable

!

dy(t)
dt

+
1
RC

y(t) =
1
RC

g(t)

!

dy(t)
dt

= "
1
RC

y(t)+ 1
RC

g(t)

!

A = "
1
RC

!

A

!

det(" #1+
1
RC
) = 0

!

" = #
1
RC

!

"

Summary

Important points to remember:

1. We can model simple (mechanical/electric) systems by resorting to
basic principles and producing ODEs.

2. A special system representation is the state-space representation,
useful for simulation, linearization and to check system controllability.

3. Special system properties are homogeneity, additivity, time-invariance,
LTI, invertibility, memory, and stability. These properties can be checked by
looking at input-output experiments (no models required in principle.)

4. If an ODE model of the system is available, we can check system
stability by finding the eigenvalues of the ODE.

 5. If an state space representation of the system is available, we can check
the system controllability properties by applying the controllability
theorem.

