
Sampling:
DAC and ADC  conversion



Course Objectives

Specific Course Topics:
-Basic test signals and their properties

-Basic system examples and their properties

-Signals and systems interaction (Time Domain: Impulse
Response and convolution, Frequency Domain: Frequency
Response)

-Applications that exploit signal & systems interaction:
system id, audio effects, noise filtering, AM / FM radio

-Signal sampling and reconstruction



ADC and DAC

Goals
I. From analog signals to digital signals (ADC)

 - The sampling theorem

 - Signal quantization and dithering

  
II. From digital signals to analog signals (DAC)

- Signal reconstruction from sampled data

III. DFT and FFT



ADC and DAC

Analog-to-digital conversion (ADC) and digital-to-analog
conversion (DAC) are processes that allow computers to
interact with analog signals. These conversions take place in
e.g.,  CD/DVD players.

Digital information is different from the analog counterpart in
two important respects: it is sampled and it is quantized.

These operations restrict the information a digital signal
can contain. Thus, it is important to understand what
information you need to retain and what information you can
afford to lose. These are information management questions.

The understanding of these restrictions will allow us decide how
to select the sampling frequency, number of bits, and the
type of  filter for converting between the analog and digital
realms.



Sampling

The fundamental
consideration in
sampling is how fast
to sample a signal to
be able to reconstruct
it.

High Sampling Rate

Medium Sampling Rate

Low Sampling Rate

Signal to be Sampled



The sampling theorem

Suppose you sample a signal in some way. If you can exactly
reconstruct the signal from the samples, then you have
done a proper sampling and captured the key signal
information

Definition: The sampling frequency     , is the number of
samples per second. This is to be compared with the signal
cyclic frequencies

Examples of proper sampling:

The continuous analog signal
(constant DC value or cosine
with zero frequency) can be
reconstructed from the samples

! 

! 

fs



The sampling theorem

Example of proper sampling (II):

This is a            cycle/second
sinusoid sampled at
               samples/second.
In other words, the wave has
a frequency of 0.09 of the sampling
rate:

Equivalently, there are                           samples taken over a
complete cycle of the sinusoid

These samples represent accurately the sinusoid because there is no
other sinusoid that can produce the same samples

! 

f = 0.09 " fs = 0.09 "1000

! 

1000 /90 =11.1

! 

fs =1000

! 

f = 90



The sampling theorem

Example of proper sampling (III):

Here,
This results into        samples
per sine wave cycle. The
samples are so sparse they don’t
appear to follow the analog wave

Strange as it seems, it can be proven that no other sine wave can
produce the same type of samples

Since the samples represent accurately the sinusoid they constitute a
proper sampling

! 

f = 0.31" fs

! 

3.2



The sampling theorem

Example of improper sampling:

Here,
This results into        samples
per sine wave cycle

Clearly, this is an improper sampling of the signal because another
sine wave can produce the same samples

The original sine misrepresents itself as another sine. This
phenomenon is called aliasing. (The original sine has hidden its
true identity!)

! 

f = 0.95 " fs

! 

1.05



The sampling theorem

Suppose a signal’s highest frequency is     (a low-
pass or a band-pass signal). Then a proper
sampling requires a sampling frequency     at least
satisfying

The number        is called the Nyquist frequency

The number        is called the Nyquist rate

Example: Consider an analog signal with frequencies between 0
and 3kHz. A proper sampling requires a 6kHZ sampling
frequency or higher

Effects of aliasing: It can change the signal real frequency and
the signal real phase (as we saw in previous slide)

! 
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Discrete-time Signals

Continuous-time signal Discrete-time signal
math: real function of    math: sequence

Impulse-sampled signal
math: train of impulses

t
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Sampling in the Frequency Domain

A train of impulses has Fourier Transform

So sampling a continuous-time signal in the time domain

is a convolution in the frequency domain
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Sampling in the Frequency Domain

Graphical interpretation of the formula

Continuous-time spectrum

is scaled and replicated (replicas are called aliases)

Aliasing: If signal bandwith            then spectrum overlaps!
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Reconstruction from sampled signal

Question: When can we reconstruct       from       ?

Answer: If         (no aliasing) use a low-pass filter!
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If            (with aliasing) original signal has been lost!

! 

fB "
f s
2

! 

X" ( j# )

! 

X( j" )



Aliasing in the frequency domain

In order to understand better why aliasing is produced, and to
demonstrate the sampling theorem, let us look at the signals
in the frequency domain

Here the analog signal has a frequency of

! 

0.33 " fs < 0.5 " f s



Aliasing in the frequency domain

The sampling of the signal corresponds to doing a convolution
of the signal with a delta impulse train. We call the
resulting signal impulse train. The magnitude of this
impulse train is shown on the right

As you can see, the sampling has the effect of duplicating the
spectrum of the original signal an infinite number of times.
In other words, sampling introduces new frequencies



Aliasing in the frequency domain

Compare the previous plot with the following one for a different
sampling:

Here,                                  , so this is an improper
sampling. In the FD this means that the repeated spectra
overlap. Since there is no way to separate the overlap, the
signal information is lost

! 

f = 0.66 " fs > 0.5 " f s



Example

At what rate should we sample the following signal to be
able to perfectly reconstruct it?

! 

x(t) = 32sinc(101t)cos(200"t)

Go to the frequency domain
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Hence fm = 301/2Hz

! 

Nyquist rate is 2 fm = 301Hz



Sampling must be done above the Nyquist rate

Cosine sampled at twice its
Nyquist rate.  Samples uniquely
determine the signal.

Cosine sampled at exactly its
Nyquist rate.  Samples do not
uniquely determine the signal.

A different sinusoid of the same
frequency with exactly the
same samples as above.



Sampling a Sinusoid

Sine sampled at its Nyquist
rate.  All the samples are zero.

Adding a sine at the
Nyquist frequency
(half the Nyquist
rate) to any signal
does not change the
samples.



Bandlimited Periodic Signals

If a signal is bandlimited it can be properly sampled according
to the sampling theorem.

If that signal is also periodic its CTFT consists only of impulses.

Since it is bandlimited, there is a finite number of (non-zero)
impulses.

Therefore the signal can be exactly represented by a finite set
of numbers, the impulse strengths.



Bandlimited Periodic Signals

If a bandlimited periodic signal is sampled above the Nyquist
rate over exactly one fundamental period, that set of
numbers is sufficient to completely describe it

If the sampling continued, these same samples would be
repeated in every fundamental period

So a finite sequence of numbers is needed to completely
describe the signal in both time and frequency domains



ADC and DAC

Goals
I. From analog signals to digital signals (ADC)

 - The sampling theorem

 - Signal quantization and dithering

  
II. From digital signals to analog signals (DAC)

- Signal reconstruction from sampled data

III. DFT and FFT



Illustration of digitization process

We will look into two stages of the
ADC process: sample and hold
and quantization. After that, the
signal is encoded into bits.



Digitization process

Sample and hold:
The output only changes at periodic instants of time. The
independent variable now takes values in a discrete set

Before:                           After sampling:

! 

t " {0,0.1,...50},

! 

yA (t)" (3000,3025),

! 

t " (0,50),

! 

yS (t)" (3000,3025),



Digitization process

Quantization:
Each flat region in the sampled signal is “rounded-off” to the
nearest member of a set of discrete values (e.g., nearest integer)

Before:                                       After quantization:

The quantized signal can be then encoded into bits. A bit is a
binary digit (0 or 1). A total of              characters (letters of the
alphabet, numbers 0 to 9, and some punctuation characters) can be
encoded into a sequence of     binary bits

! 

yQ (t)" {3000,3001,....,3025}

! 

t " {0,0.1,...50},

! 

t " {0,0.1,...50},

! 

yA (t)" (3000,3025),

! 

27 =128

! 

7



Digitization process

Illustration of the code for the word “signal”:

Bits are sent sequentially, they are preceded by a start bit
followed by one or two stop bits

In direct-wired connections between digital equipment, bit can
be represented by a higher voltage (2 to 5V) for a 1 and a
lower voltage (around 0V) for a 0



Signal quantization

Main effect of quantization: introduces error in the signal

This graph measures the
difference between the
sampled and quantized signals.
The error is measured
in LSBs (least significant bit,
a DSP jargon) and is between
the - ½ and ½ values.

The quantization error looks very much like random
noise. Because of this, it is usually modeled as a random
number between – ½ and ½, with zero mean and standard
deviation of 1/sqrt(12) LSB (uniform probability distribution)

! 



Signal quantization

Facts:

(1) The random noise or quantization error will add to whatever
noise is present in the analog signal

(2) The quantization error is determined by the number of bits
that are later used to encode the signal. If we increase the
number of bits, the error will decrease

Question: How many bits do we need in the ADC? How fine
should the quantization be? (equivalent questions)

Answer: the number of bits chosen should be enough so that
the quantization error is small in comparison with the noise
present in the signal

! 



Dithering

When isn’t this model of quantization as noise valid? When the
analog signal remains about the same value for many
consecutive samples

In the situation above, dithering;
i.e., adding small noise
to the signal before quantizing
improves things!

! 



ADC and DAC

Goals
I. From analog signals to digital signals (ADC)

- The sampling theorem

        - Signal quantization and dithering

  
II. From digital signals to analog signals (DAC)

- Signal reconstruction from sampled data

III. DFT and FFT



Digital-to-analog conversion

The DAC reverses the ADC process:
(1) It decodes the signal making a conversion from a bit

sequence to an impulse train:



Digital-to-analog conversion

(2) The signal is reconstructed with an electronic low-pass filter
to remove the frequencies about ½ the sampling rate

After filtering the impulse train with a such a low pass filter, we
would obtain:



Digital-to-analog conversion

However, the ideal operation just described assumes availability
of infinitely many samples - not realistic!

Practical operation uses only a finite number of samples. Many
techniques can be used to approximately reconstruct the
signal.

One such technique is a zero-order holder.

     Modulated impulses                  After Zero-Order Holder

t0 T 2T 3T 4T 5T 6T 7T-T-2T
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x" (t)

t0 T 2T 3T 4T 5T 6T 7T-T-2T
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xs(t)



Sampling with Zero-order Holder

A zero-order holder has impulse response

In the frequency domain
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Sampling with Zero-order Holder

A sampled signal through a zero-order holder

In the frequency domain
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Sampling with Zero-order Holder

In the frequency domain, the zero-order holder
translates into a multiplication of the real signal
spectrum by a sinc function!



Digital-to-analog conversion

In this case you can do several things:

(1) Ignore the effect of the zeroth-order hold and accept the
consequences

(2) Design an analog filter to remove the sinc effect. For
example an ideal filter that works has this shape:

This will boost the frequencies
that have been affected by
the sinc function

Other more sophisticated
possibilities are:
(3) Use a fancy “multirate filter” (downsampling, upsampling)
(4) Correct for the zeroth order hold before the DAC



Connection to electronic filters

The full block diagram of a DSP system is the following:

Analog electronic filters are used to comply with the sampling
theorem. The filter placed before ADC is an antialias filter. It
removes frequencies higher than half the sampling rate. The
filter placed after the DAC is a reconstruction filter. It may
include a correction for the zeroth-order hold.



Filters for data conversion

Problem with this design:

Analog filters are not ideal! Thus, knowledge of lowpass filters is
important to be able to deal with different types of signals
(analog filters are being substituted by digital ones)

The filters you choose depend on the application!



ADC and DAC

Goals
I. From analog signals to digital signals (ADC)

- The sampling theorem

        - Signal quantization and dithering

  
II. From digital signals to analog signals (DAC)

- Signal reconstruction from sampled data

III. DFT and FFT



What is the CTFT of an impulse-sampled signal?

We have already seen

Alternatively,

Define the Discrete-Time Fourier Transform of

Then
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The Discrete-Time Fourier Transform



The Discrete-Time Fourier Series

The Discrete-Time Fourier Transform of discrete-time signal       is

         is periodic in

The Discrete-Time Fourier Series of periodic discrete-time signal
      of period     is (               )

The DTFT of a periodic
signal is the DTFS:
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The Discrete Fourier Transform (DFT)

Instead of the DTFS, Matlab implements the Discrete
Fourier Transform,

 
x n[ ] = 1

NF

X k[ ]e
j2! nk

NF

k=0

NF "1

# D F T$ %&& X k[ ] = x n[ ]e
" j2! nk

NF

n=0
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#

which is almost identical to the DTFS
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" j2! nk

NF
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#

The difference is only a scaling factor

Two different names for essentially the same object because of 
historical reasons.



Computing the DFT

One could write a Matlab program to compute the DFT like this
.
.
% (Acquire the input data in an array x with NF elements.)
.
.
%
% Initialize the DFT array to a column vector of zeros.
%
X = zeros(NF,1) ;
%
% Compute the Xn’s in a nested, double for loop.
%
for k = 0:NF-1

for n = 0:NF-1
X(k+1) = X(k+1)+x(n+1)*exp(-j*2*pi*n*k/NF) ;

end
end
.
.

Quadratic in      . Instead, the fast Fourier transform (matlab
command fft) is an efficient algorithm for computing the DFT.

! 

NF



Fast Fourier Transform (FFT)

The algorithm FFT can compute the DFT in
           operations

The FFT takes an N-sample time-sequence {xn}
And gives us an N-sample frequency-sequence {Xk}

This is reversible via the IFFT operation
No data is lost in either direction

Recall periodicity of DFT

The FFT describes the signal in terms of its frequency content
If we sampled fast enough, this is the same as the Fourier

Transform of the original continuous-time signal

The FFT is a primary tool for data analysis

! 

X[k + NF ] = X[k]

! 

O(NF log2 NF )



Speed comparison DFT/FFT
Below is a speed comparison for various numbers of samples (N).
(A means # additions and M means # multiplications.)

! N = 2! ADFT MDFT AFFT MFFT ADFT / AFFT MDFT / MFFT

1 2 2 4 2 1 1 4
2 4 12 16 8 4 1.5 4
3 8 56 64 24 12 2.33 5.33
4 16 240 256 64 32 3.75 8
5 32 992 1024 160 80 6.2 12.8
6 64 4032 4096 384 192 10.5 21.3
7 128 16256 16384 896 448 18.1 36.6
8 256 65280 65536 2048 1024 31.9 64
9 512 261632 262144 4608 2304 56.8 113.8
10 1024 1047552 1048576 10240 5120 102.3 204.8



The z-Transform

What is the Laplace transform of a sampled signal?

where

is the z-Transform. The inverse formula is a bit more involved
but often not needed!

Generalizes the DTFT. Surprised?
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Discrete-time Systems with the z-Transform

Some properties of the z-Transform

   (integration in Laplace)

   (differentiation in Laplace)

   (convolution)

Proofs are easier, e.g.
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Discrete-time Systems with the z-Transform

We use the basic property
(integration in Laplace)

to study the system described by the linear
difference equation

as with Laplace trasforms we have

from where we obtain the transfer function

! 
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! 
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! 

Y (z) "# z"1Y (z) = X(z)

! 

Y (z) = H(z)X(z)

! 

H(z) =
z

z "#
=

1
1"#z"1



Discrete-time Systems with the z-Transform

When           is a pulse (                             )

and

from where we compute the impulse response

! 

X(z) = Z xn{ } = Z "n{ } =1
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Discrete-time Systems with the z-Transform

For stability we need

which converges if        (pole inside the unit circle)

A discrete-time convolution formula holds

and             is the DTFT

We can do frequency domain analysis directly in the z-domain!
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Discretized Continuous-Time Systems

Response of a continuous-time LTI system to a
sampled input

is given by the convolution
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Discretized Continuous-Time Systems

If we sample the output at multiples of

which is a discrete-time convolution if we define

From there we can obtain the z-transform of the
discretized system
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Discretized Continuous-Time Systems

For example

we have

Continuous-time pole         becomes          !
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