MAE 286: Hybrid Systems (F10) Homework #4

Due on 10/26/10

- 1. (1 point) Give an example of a set-valued map $M : \mathbb{R}^d \rightrightarrows \mathbb{R}^e$ which is upper semicontinuous at a point $x \in \mathbb{R}^d$ but not outer semicontinuous at $x \in \mathbb{R}^d$.
- 2. (1 point) Give an example of a sequence $\{\phi_i\}_{i=1}^{\infty}$ of hybrid arcs that converges graphically to ϕ such that ϕ itself is not a hybrid arc.
- 3. (2 points) Consider the hybrid system \mathcal{H} with state $x \in \mathbb{R}^2$ and data

$$C := \{x \in \mathbb{R}^2 \mid ||x|| < 1\}, \qquad f(x) := \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$
$$D := \{x \in \mathbb{R}^2 \mid x_1 = 0, x_2 \in (-\frac{1}{2}, 0]\}, \quad g(x) := \frac{1}{2}x$$

Do the following:

- (a) Give an example of a sequence of solutions of the hybrid system that graphically converges and whose limit is not a solution of the hybrid system.
- (b) Is the limit of your sequence in (a) a Krasovskii solution of the hybrid system?
- 4. (1 point) Consider a map $z : [0, \infty) \to \mathbb{R}^d$ (e.g., the complete solution of a differential equation). For $i \in \mathbb{N}$, define $S_i = \{z(t) \mid t \ge i\}$. Calculate $\limsup_{i\to\infty} S_i$ and explain its relationship with the ω -limit set of z.