MAE 286: Hybrid Systems (F10) Homework \#5

Due on 11/3/10

1. (2 points) Consider the sequence of hybrid arcs $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ where $\phi_{i}:[0, \infty) \times\{0\} \rightarrow \mathbb{R}, \phi_{i}(t, j)=t^{i}$.

- Is the sequence locally eventually bounded?
- Is the graphical limit a hybrid arc?

2. (1 point) Let $\left\{E_{i}\right\}_{i=1}^{\infty}$ be a convergent sequence of hybrid time domains. Prove (carefully and with full details!) that $E=\lim _{i \rightarrow \infty} E_{i}$ is a hybrid time domain and that length $(E)=\lim _{i \rightarrow \infty} \operatorname{length}\left(E_{i}\right)$.
3. (2 points) Consider the set-valued map $F: \mathbb{R} \rightrightarrows \mathbb{R}$ given by

$$
F(x)= \begin{cases}-1 & x>0 \\ {[-1,1]} & x=0 \\ 1 & x<0\end{cases}
$$

Is F outer semicontinuous? Is it locally bounded? Does it take nonempty and convex values? Do solutions exist to the differential inclusion

$$
\begin{equation*}
\dot{x} \in F(x) \tag{1}
\end{equation*}
$$

starting from any initial condition? Which ones are they? Are they unique? What is the connection of (1) with $\dot{x}=-\operatorname{sgn}(x)$?

