MAE 286: Hybrid Systems (W14) Homework \#1

Due on 1/14/14

1. (2 points) Consider the discontinuous differential equation

$$
\begin{aligned}
& \dot{x}_{1}=-\operatorname{sign}\left(x_{1}\right)+2 \operatorname{sign}\left(x_{2}\right) \\
& \dot{x}_{2}=-2 \operatorname{sign}\left(x_{1}\right)-\operatorname{sign}\left(x_{2}\right)
\end{aligned}
$$

where $x_{1}(0) \neq 0$ and $x_{2}(0) \neq 0$ and

$$
\operatorname{sign}(z)= \begin{cases}1 & z>0 \\ -1 & z<0 \\ \text { undefined } & z=0\end{cases}
$$

This system defines a hybrid automaton with four discrete modes having invariants corresponding to the four quadrants. Do the following

- Specify a non-blocking and deterministic hybrid automaton H modeling the system.
- Does H accept Zeno executions for every initial state?

2. (2 points) Consider the balls depicted in Figure 1. Assume they all have unit mass, and that they are

Figure 1: Three balls colliding.
touching at time $t=0$. The initial velocity of ball 1 is $v_{1}(0)=1$, while balls 2 and 3 are at rest. Assume the impact is a sequence of simple inelastic impacts. The first inelastic collision occurs between balls 1 and 2 , resulting in $v_{1}(0+)=v_{2}(0+)=0.5$ and $v_{3}(0+)=0$. Since $v_{2}(0+)>v_{3}(0+)$, ball 2 hits ball 3 instantaneously giving $v_{1}(0++)=0.5$ and $v_{2}(0++)=v_{3}(0++)=0.25$. Now $v_{1}(0++)>v_{2}(0++)$, so ball 1 hits ball 2 again resulting in a new inelastic collision. This leads to an infinite sequence of collisions.
(i) Model the inelastic collisions of the three ball system as a hybrid automaton H with a single discrete mode and three continuous variables $\left(x_{1}, x_{2}, x_{3}\right)$ representing the velocities of the balls.
(ii) Show that H accepts a Zeno execution corresponding to the sequence of collisions described above.

