Mathematical Analysis for Applications - MAE 289A - Final

Student name \qquad

Instructions

(i) Please read carefully the questions of the exam.
(ii) You have 24 hours to complete it since Thurs 13:00pm until Friday 13:00pm. Please return at EBU-I, 1807.
(iii) The exam is open notes.
(iv) Your solution must be done independently of others; discussing problem solutions with others is not allowed. The minimum suspicion this rule has been violated will invalidate your exam.

Questions

1. (15 points) Given a metric space (X, d), prove that the following are equivalent:
(i) (X, d) is complete
(ii) Any sequence $C_{1} \supset C_{2} \supset C_{3} \supset \cdots \supset C_{n} \supset \ldots$ of non-empty sets in X such that $\lim _{n \rightarrow \infty} \operatorname{diam}\left(C_{n}\right)=0$ satisfies that $\cap_{n=1}^{\infty} C_{n} \neq \emptyset$.
2. (15 points) Consider the problem:

$$
\begin{aligned}
& \min x^{2}+5 y^{3}-y \\
& \text { s.t. } x^{2}+y^{2} \leq 1 \\
& \quad y \geq 0
\end{aligned}
$$

(i) Can this be considered to be a convex problem?
(ii) Define the associated Lagrangian and compute the solutions via the KKT conditions. Do we have a zero duality gap for this problem?
3. (15 points) Let $\left(\mathbb{R}^{n}, d_{2}\right)$ the Euclidean metric space induced by the norm $\|\cdot\|_{2}$. Prove the following statements about the sets:

$$
A+B=\{a+b \mid a \in A, b \in B\}, \quad[A, B]=\cup\{[a, b] \mid a \in A, b \in B\}
$$

(i) If A is closed and B is compact, then $A+B$ is closed but the conclusion is false when only A and B are assumed to be closed.
(ii) If A and B are compact, then $[A, B]$ is also compact.
4. (15 points) Consider the following:
(i) Let $f: A \longrightarrow \mathbb{R}$ a continuous function defined over a closed and unbounded set $A \subseteq \mathbb{R}^{n}$. Prove that if the limit $\lim _{\|x\|_{2} \rightarrow+\infty} f(x)$ exists and is equal to a finite value L, then f is uniformly continuous.
(ii) Is the mapping $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined as $f(x)=x^{2}$ uniformly continuous on \mathbb{R} ? Why / why not?
5. (15 points) Suppose that f is a real-valued function in a open set $E \subset \mathbb{R}^{n}$, and that the partial derivatives $D_{1} f, \ldots, D_{n} f$ are bounded on E. Prove that f is continuous on E.

