MAE 289A: Mathematical Analysis for Applications (F15) Homework \#1

Due on 10/1/15

1. Given that p is T (true), q is F (false), and s is T (true), evaluate whether the following are T or F : $(\neg q \leftrightarrow p),(\neg(p \rightarrow p) \vee s), \neg(\neg q \vee \neg p),(s \leftrightarrow \neg p), \neg(\neg s \leftrightarrow(\neg s \leftrightarrow \neg q))$.
2. Evaluate whether the following are T or F :

- $p \wedge q$ implies $p \vee q$
- $p \vee q$ implies p
- $(p \wedge \neg q) \rightarrow \neg p$ is equivalent to $p \rightarrow q$
- $p \vee q$ is equivalent to $\neg p \rightarrow q$
- $p \wedge q$ is equivalent to $\neg p \rightarrow q$

3. Check whether the following are true or false:
(i) The statements $\neg(\forall x(p(x) \rightarrow q(x)))$ and $\forall x(q(x) \rightarrow p(x))$ are equivalent,
(ii) The statements $(\forall x p(x)) \wedge(\forall y q(y))$ and $\forall z(p(z) \wedge q(z))$ are equivalent,
(iii) The statements $(\forall x p(x)) \vee(\forall y q(y))$ and $\forall z(p(z) \vee q(z))$ are equivalent,
(iv) The statements $\exists x(p(x)) \wedge \exists y(q(y))$ and $\exists z(p(z) \wedge q(z))$ are equivalent,
(v) The statements $\neg \exists x(p(x) \vee \neg(q(x)))$ and $\exists x(\neg(p(x) \wedge q(x)))$ are equivalent.
4. Consider the following definition: If a and b are two natural numbers, we say that a divides b if there is another natural number k such that $b=a k$. Using this definition, prove directly that if a divides b and a divides c, then a divides $b+c$.
5. Prove by contradiction that if a is a rational number and b is an irrational number, then $a+b$ is an irrational number. To prove the previous statement, use the definition that a is a rational number if there are integer numbers m, n, with $n \neq 0$, such that $a=\frac{m}{n}$.
6. Typically the sums of the form $\sum_{k=1}^{n} k^{m}$, where m is a fixed positive integer, are proven by induction. However, to do this, you need to come up with a tentative formula in the first place. A trick to derive a formula is given by matching coefficients. We apply this for the particular case $\sum_{k=1}^{n} k^{2}$.
(i) Assume that there are constants A, B, C, D such that

$$
\sum_{k=1}^{n} k^{2}=A n^{3}+B n^{2}+C n+D
$$

Find what the constants should be so that when you consider $\sum_{k=1}^{n+1} k^{2}=\sum_{k=1}^{n} k^{2}+(n+1)^{2}=$ $A(n+1)^{3}+B(n+1)^{2}+C(n+1)+D$ the coefficients of powers of n are matched.
(ii) After finding your answer to (i), prove that the result holds by induction.
7. Prove that if there are 6 people at a party, then either 3 of them are friends among themselves, or 3 of them were complete strangers before the party.
Hint: Select one person and apply the pigeon hole argument with people who know or do not know her. Then, reason with the relationships among people in the largest group.

