MAE 289A: Mathematical Analysis for Applications (F15) Homework \#2

Due on 10/8/15

1. Let A be a nonempty set of real numbers which is bounded above. Let $-A$ be the set defined by

$$
-A=\{-x \in \mathbb{R} \mid x \in A\}
$$

How are $\inf (-A)$ and $\sup (A)$ related?
Hint: Draw some pictures in the real line, to have an idea, and then prove it. What about the relationship between $\sup (-S)$ and $\inf (S)$, where S is a set which is bounded below?
2. Let $b>1$ and $y>0$. In this exercise, we prove that there is a unique real number x (the logarithm of y to the base b) such that $b^{x}=y$ by completing the following outline:
(i) For any positive integer $n, b^{n}-1 \geq n(b-1)$.
(ii) Hence $b-1 \geq n\left(b^{1 / n}-1\right)$.
(iii) If $t>1$ and $n>(b-1) /(t-1)$, then $b^{1 / n}<t$.
(iv) If w is such that $0<b^{w}<y$, then $b^{w+(1 / n)}<y$ for sufficiently large n; to see this, apply the previous part with $t=y \cdot b^{-w}$.
(v) If $b^{w}>y$, then $b^{w-(1 / n)}>y$ for sufficiently large n.
(vi) Let A be the set of all w such that $b^{w}<y$, and show that $x=\sup A$ satisfies $b^{x}=y$.
(vii) Prove that x is unique.

Note: To do this problem, use that b^{x}, for $b>1$ and $x \in \mathbb{R}$, is a well-defined operation that satisfies $b^{x+y}=b^{x} b^{y}$, for every $x, y \in \mathbb{R}$.
3. Prove that for any two complex numbers z, x,

$$
\| z|-|x|| \leq|z-x| .
$$

4. Consider a paper square of $30 \times 30 \mathrm{~cm}^{2}$ and cut out equal-sized small squares from each corner. After this, fold up the sides to form a box. What would be the maximum volume that the box can have as a function of the small square side? (You can not use derivatives in your solution!)
Hint: Use the arithmetic-geometric mean inequality
5. Consider the set of all numbers of the form $a+b \sqrt{7}$, with a and b rational. Is this a field? Justify your answer.
