MAE 289A: Mathematical Analysis for Applications (F15) Homework \#3

Due on 10/15/15

1. Define the set S as follows: x is an element of S if x is an infinite sequence of the form

$$
r_{1}, r_{2}, \ldots, r_{n}, 0, \ldots, 0, \ldots
$$

with $r_{i} \in \mathbb{Q}, i=1, \ldots, n$. In other words, from some n on, the sequence consists entirely of zeros, and the nonzero entries are rational numbers. Show that S is countable.
2. Construct a set of real numbers with exactly three limit points.
3. Let E^{o} denote the set of all interior points of the set E. Do the following:
(i) Prove that E^{o} is always open.
(ii) Prove that E is open if and only if $E=E^{o}$.
(iii) Prove that if $G \subset E$ and G is open, then $G \subset E^{o}$.
(iv) Prove that the complement of E^{o} is the closure of the complement of E.
(v) Do E and \bar{E} have the same interiors always?
(vi) Do E and E^{o} have the same closures always?
4. A metric space is called separable if it contains a countable dense subset. Show that \mathbb{R}^{k} is separable.
5. Let $X=\mathbb{R}^{2}$. Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right) \in X$ be generic elements of X. Draw the ball $B((1,1), 1)$ centered at $(1,1)$ of radius 1 for the following metrics:
(i) The Euclidean metric d_{2} given by $d_{2}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
(ii) The metric d_{1} given by $d_{1}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$
(iii) The metric d_{∞} given by $d_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$
(iv) The metric d_{4} given by $d_{4}(x, y)=\sqrt[4]{\left(x_{1}-y_{1}\right)^{4}+\left(x_{2}-y_{2}\right)^{4}}$ (a rough sketch is fine)

