MAE 289A: Mathematical Analysis for Applications (F15) Homework #3

Due on 10/15/15

1. Define the set S as follows: x is an element of S if x is an infinite sequence of the form

 $r_1, r_2, \ldots, r_n, 0, \ldots, 0, \ldots$

with $r_i \in \mathbb{Q}$, i = 1, ..., n. In other words, from some n on, the sequence consists entirely of zeros, and the nonzero entries are rational numbers. Show that S is countable.

- 2. Construct a set of real numbers with exactly three limit points.
- 3. Let E^o denote the set of all interior points of the set E. Do the following:
 - (i) Prove that E^o is always open.
 - (ii) Prove that *E* is open if and only if $E = E^{o}$.
 - (iii) Prove that if $G \subset E$ and G is open, then $G \subset E^o$.
 - (iv) Prove that the complement of E^o is the closure of the complement of E.
 - (v) Do *E* and \overline{E} have the same interiors always?
 - (vi) Do E and E^o have the same closures always?
- 4. A metric space is called *separable* if it contains a countable dense subset. Show that \mathbb{R}^k is separable.
- 5. Let $X = \mathbb{R}^2$. Let $x = (x_1, x_2)$ and $y = (y_1, y_2) \in X$ be generic elements of X. Draw the ball B((1, 1), 1) centered at (1, 1) of radius 1 for the following metrics:
 - (i) The Euclidean metric d_2 given by $d_2(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
 - (ii) The metric d_1 given by $d_1(x, y) = |x_1 y_1| + |x_2 y_2|$
 - (iii) The metric d_{∞} given by $d_{\infty}(x, y) = \max\{|x_1 y_1|, |x_2 y_2|\}$
 - (iv) The metric d_4 given by $d_4(x, y) = \sqrt[4]{(x_1 y_1)^4 + (x_2 y_2)^4}$ (a rough sketch is fine)