MAE 289A: Mathematical Analysis for Applications (F15) Homework \#5

Due on 11/5/15

1. Let X be the space of $n \times n$ matrices, equipped with the induced L_{2} norm (i.e., $\|A\|_{2}=\sup _{x \neq 0}\|A x\|_{2} /\|x\|_{2}$, where $\|x\|_{2}$ is the Euclidean norm on \mathbb{R}^{n}). Let S_{n}^{\geq}be the subset of X consisting of positive semidefinite, symmetric matrices. Prove that S_{n}^{\geq}is a pointed, proper, convex cone.
(A cone K is pointed if $K \cap-K=0$, and solid if the interior of K is not empty. A cone that is convex, closed, pointed and solid is called a proper cone.)
2. Let $S \subset \mathbb{R}, S \neq \emptyset$ with $z=\inf (S)>-\infty$. Prove that there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset S$ such that $x_{n} \rightarrow z$.
3. Suppose $\left\{p_{n}\right\}_{n=1}^{\infty} \subset A$ does not have any convergent subsequences. Prove that for any $p_{k} \in\left\{p_{n}\right\}_{n=1}^{\infty}$, there exists $\delta>0$ such that $B_{\delta}\left(p_{k}\right) \cap\left\{p_{n}\right\}_{n=1}^{\infty}=\left\{p_{k}\right\}$ (the set consisting only of the point p_{k}).
Hint: Reason by contradiction.
4. Let $s_{1}=\sqrt{2}$ and define

$$
s_{n+1}=\sqrt{2+\sqrt{s_{n}}}, \quad n \in \mathbb{N}
$$

Prove that $s_{n}<2$ for all $n \in \mathbb{N}$ and that $\left\{s_{n}\right\}$ converges.
Hint: Use induction and prove that the sequence is monotonic.
5. Suppose that $\left\{p_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in a metric space X, and some subsequence $\left\{p_{n_{k}}\right\}_{k=1}^{\infty}$ converges to a point $p \in X$. Prove that the whole sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges to p.
6. Let $\left\{p_{n}\right\}_{n=1}^{\infty}$ and $\left\{q_{n}\right\}_{n=1}^{\infty}$ be Cauchy sequences in a metric space X. Show that the sequence $\left\{d\left(q_{n}, p_{n}\right)\right\}_{n=1}^{\infty}$ converges.
Hint: Note that, for any $m, n \in \mathbb{N}$, by the triangle inequality,

$$
d\left(p_{n}, q_{n}\right) \leq d\left(p_{n}, p_{m}\right)+d\left(p_{m}, q_{m}\right)+d\left(q_{m}, q_{n}\right)
$$

Therefore, it follows that $\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right|$ is small if m and n are large. Use this fact!

