MAE 289A: Mathematical Analysis for Applications (F15) Homework \#6

Due on 11/12/15

1. Recall the Netwon method described in class to find a numerical representation of $\sqrt{3}$ by solving the equation $g(x)=0$, where $g(x)=x^{2}-3$. After some manipulations, we arrived at

$$
\begin{equation*}
x_{n}=x_{n-1}-\frac{x_{n-1}^{2}-3}{2 x_{n-1}} . \tag{1}
\end{equation*}
$$

As we reasoned, this can be posed as fixed-point iteration for the function $f: X \rightarrow X, f(x)=$ $x-\left(x^{2}-3\right) / 2 x$. Do the following:
(i) For the choice $X=[t, \infty)$, find conditions on t that ensure $f(X) \subset X$. Is X a complete metric space?
(ii) Find conditions on t that ensure that f is a contraction.
(iii) Apply Banach's fixed-point theorem to establish the convergence properties of the iteration (1)
(iv) How many iterations would you need to approximate $\sqrt{3}$ with an error less than or equal to 10^{-6} starting from $x_{0}=7$?
(v) User your preferred programming method (e.g., Matlab/Mathematica/C++/Python) to implement the iteration (1) starting from $x_{0}=7$ and $x_{0}=2$.
2. If $\sum a_{n}$ converges absolutely and $\left\{b_{n}\right\}$ is a sequence of positive numbers monotonically increasing and convergent, prove that $\sum a_{n} b_{n}$ converges.
3. For what values of p does the series $\sum_{n=1}^{\infty} \frac{\log n}{n^{p}}$ converge?
4. Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X. Prove that
(i) $f(E)$ is dense in $f(X)$;
(ii) If $g(p)=f(p)$ for all $p \in E$, then $g(p)=f(p)$ for all $p \in X$.
(In other words, a continuous mapping is determined by its values on a dense subset of its domain.)
5. Disprove the claim that a continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ maps open sets onto open sets, i.e., that if C is open, then $f(C)$ is open.

