MAE 289A: Mathematical Analysis for Applications (F15) Homework #6

Due on 11/12/15

1. Recall the Netwon method described in class to find a numerical representation of $\sqrt{3}$ by solving the equation g(x) = 0, where $g(x) = x^2 - 3$. After some manipulations, we arrived at

$$x_n = x_{n-1} - \frac{x_{n-1}^2 - 3}{2x_{n-1}}.$$
(1)

As we reasoned, this can be posed as fixed-point iteration for the function $f : X \to X$, $f(x) = x - (x^2 - 3)/2x$. Do the following:

- (i) For the choice $X = [t, \infty)$, find conditions on t that ensure $f(X) \subset X$. Is X a complete metric space?
- (ii) Find conditions on t that ensure that f is a contraction.
- (iii) Apply Banach's fixed-point theorem to establish the convergence properties of the iteration (1)
- (iv) How many iterations would you need to approximate $\sqrt{3}$ with an error less than or equal to 10^{-6} starting from $x_0 = 7$?
- (v) User your preferred programming method (e.g., Matlab/Mathematica/C++/Python) to implement the iteration (1) starting from $x_0 = 7$ and $x_0 = 2$.
- 2. If $\sum a_n$ converges absolutely and $\{b_n\}$ is a sequence of positive numbers monotonically increasing and convergent, prove that $\sum a_n b_n$ converges.
- 3. For what values of *p* does the series $\sum_{n=1}^{\infty} \frac{\log n}{n^p}$ converge?
- 4. Let *f* and *g* be continuous mappings of a metric space *X* into a metric space *Y*, and let *E* be a dense subset of *X*. Prove that
 - (i) f(E) is dense in f(X);
 - (ii) If g(p) = f(p) for all $p \in E$, then g(p) = f(p) for all $p \in X$.

(In other words, a continuous mapping is determined by its values on a dense subset of its domain.)

5. Disprove the claim that a continuous function $f : \mathbb{R}^n \to \mathbb{R}$ maps open sets onto open sets, i.e., that if *C* is open, then f(C) is open.