MAE 289A: Mathematical Analysis for Applications (F15) Homework #8

Due on 12/3/15

1. Let C_0, \ldots, C_n be real constants and assume

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0.$$

Prove that the equation $C_0 + C_1 x + \cdots + C_{n-1} x^{n-1} + C_n x^n = 0$ has at least one real root between 0 and 1.

Hint: Use integration over the last expression.

- 2. Let *f* be defined on \mathbb{R} and suppose that $|f(x) f(y)| \le (x y)^2$ for all x, y. Prove that *f* is constant. *Hint:* Compute the differential of the function.
- 3. Suppose *f* takes real values, is three times differentiable, defined on [-1, 1], such that

$$f(-1) = 0, f(0) = 0, f(1) = 1, f'(0) = 0$$

Prove that $f^{(3)}(x) \ge 3$ for some $x \in (-1, 1)$.

Hint: Use Taylor's theorem, with $\alpha = 0$, $\beta = \pm 1$, to show that there exist $s \in (0, 1)$ and $t \in (-1, 0)$ such that $f^{(3)}(s) + f^{(3)}(t) = 6$.

4. *Running average of a convex function*. Suppose $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ is convex and differentiable. Show that its running average $F : \mathbb{R}_{>0} \to \mathbb{R}$, defined as

$$F(x) = \frac{1}{x} \int_0^x f(t)dt$$

is convex.

5. Consider the following optimization problem

minimize
$$f_0(x, y)$$
,
subject to $2x + y \ge 1$,
 $x + 3y \ge 1$
 $x \ge 0$, $y \ge 0$

with variable $(x, y) \in \mathbb{R}^2$. Make a sketch of the feasible set. For the functions (i) $f_0(x, y) = x + y$, (ii) $f_0(x, y) = x$ give the optimal set and the optimal value.