MAE 289A: Mathematical Analysis for Applications (F15) Homework \#8

Due on 12/3/15

1. Let C_{0}, \ldots, C_{n} be real constants and assume

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0 .
$$

Prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.
Hint: Use integration over the last expression.
2. Let f be defined on \mathbb{R} and suppose that $|f(x)-f(y)| \leq(x-y)^{2}$ for all x, y. Prove that f is constant. Hint: Compute the differential of the function.
3. Suppose f takes real values, is three times differentiable, defined on $[-1,1]$, such that

$$
f(-1)=0, f(0)=0, f(1)=1, f^{\prime}(0)=0
$$

Prove that $f^{(3)}(x) \geq 3$ for some $x \in(-1,1)$.
Hint: Use Taylor's theorem, with $\alpha=0, \beta= \pm 1$, to show that there exist $s \in(0,1)$ and $t \in(-1,0)$ such that $f^{(3)}(s)+f^{(3)}(t)=6$.
4. Running average of a convex function. Suppose $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ is convex and differentiable. Show that its running average $F: \mathbb{R}_{>0} \rightarrow \mathbb{R}$, defined as

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t
$$

is convex.
5. Consider the following optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x, y), \\
\text { subject to } & 2 x+y \geq 1, \\
& x+3 y \geq 1 \\
& x \geq 0, \quad y \geq 0,
\end{array}
$$

with variable $(x, y) \in \mathbb{R}^{2}$. Make a sketch of the feasible set. For the functions (i) $f_{0}(x, y)=x+y$, (ii) $f_{0}(x, y)=x$ give the optimal set and the optimal value.

