

Under DC excitations, we know the capacitor behaves as an open circuit. Therefore, we have [+1point] W_{R_1} T_{R_2} T_{R_1} T_{R_2} T_{R_2} T

Part I Next, we transform the avant into the s-domain very a correct sorce to account for the mitral andihon.

We use sorce tonusfirmation to redraw the avait as

We can now use current driven to find the arrent through the R2-impedance as

 $i_{R_2} = \frac{i_{R_2}}{\frac{1}{R_2} + \frac{1}{R_1} + sC} \left(\frac{V_i}{sR_1} + CV_i\right)$

'finally, $V_i + CR_i V_i$ s $V_0(s) = R_2 \cdot i_{R_2} = \frac{R_2 R_1}{R_1 + R_2 + R_1 R_2 Cs} \cdot \frac{V_1 + C_1}{R_1}$ $R_2(1+CR_1 8) V_i$ $(R_1+R_2+R_1R_2C_s) \in [+1point]$

Zero-state component corresponde to when the nitial conditions are set to zero. Therefore, $\left(V_0 \right)_{ZS} (s) = \frac{R_2 V_c}{(R_1 + R_2 + R_1 R_2 C_S) s}$ [+1point] Zero-input component corresponde to when the input is set to Zero. Therefore, $\left(V_{0}\right)_{\overline{x_{1}}}(s) = \frac{R_{1}R_{2}Cv_{i}}{2}$ [+1point] Rithut RiR2CS

Part V Forced component corresponds to the poles of the input. In this case, the input has a pole at O. To answer the greation, we use prompt functions to decompose Vo(s) as $S + \frac{R_1 + R_2}{R_1 R_2 C}$ $V_0(s) = \frac{\pi}{s} + \frac{\pi}{s}$

We use the residue method to find ARB. $A = \lim_{S \to 0} s V_0(s) = \lim_{S \to 0} \frac{R_2 (4 + CR_1 s) V_i}{R_1 + R_2 + R_1 R_2 Cs}$ $R_2 V_i$ $\overline{R}_1 + R_2$ $B = \lim_{S \to -\frac{R_1 + R_2}{R_1 R_2 C}} \left(s + \frac{R_1 + R_2}{R_1 R_2 C} \right) V_0(s) =$ R_2 (1+CR_1S) V_i - lim $S \rightarrow \frac{-R_1 + R_2}{R_1 R_2 C} = S \cdot C R_1 R_2$ $\mathcal{R}_{2} v_{c}^{*} \left(1 - \frac{\mathcal{L}_{R_{1}}^{*}(R_{1} + R_{2})}{\mathcal{L}_{R_{1}}^{*}R_{2}}\right) = \frac{\mathcal{R}_{2} v_{c}^{*}(T + R_{1})}{\mathcal{R}_{2} v_{c}^{*}(T + R_{2})}$ $+(\mathcal{P}_1 + \mathcal{R}_2)$ -(R,+R2) \$R2C R₁Vi $\mathcal{R}_1 + \mathcal{R}_2$

Therefore, we conclude that $\left(V_{o}\right)_{fr}(s) =$ $\frac{R_2 V_i}{(R_1 + R_2)s}$ [+1 point] $\frac{R_1 V_i}{R_1 + R_2} = \frac{R_1 + R_2}{S + \frac{R_1 + R_2}{R_2 + R_2}}$ $(V_0)_{n\gamma}(s) =$ [+1 point] R,R2C

Under DC excitation, we know the inductor belower as a short circuit. Therefore, we have

Part II

We use the mode lasels provided in the glot above. Fight away, we have that $V_A = V_i(s)$; $V_D = Li_a$ [+1 point] Because of ideal op any analitrone, we know that the op-amp has infinite import impedance, and hence R and share in series with the voltage source Lia. Therefore, $V_E = \frac{R}{R+sL} Lia \qquad [+1 point]$ KCL & node B $\frac{1}{R}\left(V_{B}-V_{A}\right)+\frac{1}{2R}\left(V_{B}-V_{0}\right)+\frac{1}{R}\left(V_{B}-V_{c}\right)=0$ [+1 point] KCL a) node (C) $\frac{1}{R} (V_{C} - V_{B}) + \frac{1}{R} (V_{C} - V_{O}) = 0 \quad [+1 \text{ point}]$ Finally, we do not write KCL for the output inde of the opamp, relying meteod on ideal op-amp conditions.

 $V_{C} = V_{F}$ (+1 point) Therefore, we have $V_0 = 2V_C - V_B = \frac{2RLia}{R+sL} - V_B$ Substituting into KCL for B, $\frac{1}{R}\left(V_{B}-V_{i}\right)+\frac{1}{2R}\left(V_{B}+V_{B}-\frac{2RLia}{RtsL}\right)+\frac{1}{R}\left(V_{B}-\frac{RLia}{RtsL}\right)=0$ $V_{B} - V_{i} + V_{B} - \frac{RLia}{RtsL} + V_{B} - \frac{RLia}{RtsL} = 0$ Alence $V_{\rm B} = \frac{1}{3} \left(V_i + \frac{2RLia}{RtsL} \right)$ And therefore $V_0(s) = \frac{2RLia}{R+sL} - \frac{1}{3}V_i(s) - \frac{2}{3}\frac{RLia}{R+sL} =$ $= -\frac{1}{3}V_{i}(s) + \frac{4}{3}\frac{RLia}{R+sL}$

Substituting the values provided, ne get $V_0(s) = -\frac{1}{3}V_1(s) + \frac{4}{3} \cdot \frac{10^2 \cdot 10^3 \cdot 10^2}{10^2 + s \cdot 10^3} =$ $= -\frac{1}{3}\left(\frac{1}{s} - \frac{1}{s+1}\right) + \frac{4}{3}\frac{1}{10^{5}+s} =$ $= -\frac{1}{3}\frac{1}{5} + \frac{1}{3}\frac{1}{5+1} + \frac{4}{3}\frac{1}{5+10^{5}}$ [+1 point] Taking invose Loplace francforms, we get $V_{0}(t) = \left(-\frac{1}{3} + \frac{1}{3}e^{-t} + \frac{4}{3}e^{-10^{5}t}\right)u(t)$ $= -\frac{1}{3} \left(1 - e^{t} - 4e^{-10^{5}t} \right) u(t)$ [+1 point]

3, - Part I

To compute the gain and phase foretrion, we evolvate the toninger foretrion at s= jiv,

 $T(jw) = \frac{10jw}{-\omega^2 + 10jw + 10}$

 $\begin{aligned} \text{erefine} & 10\omega \\ [T/ju] &= \frac{10\omega}{\sqrt{(10-\omega^2)^2 + 121\omega^2}} = \sqrt{100+\omega^4 + 101\omega^2} \\ [100+\omega^4 + 101\omega^2] \\ [100+\omega^4 + 101\omega^4] \\ [100+$ Therefore $\langle T/jw \rangle = \frac{TT}{2} - \arctan \frac{Mw}{10 - w^2} [+1 point]$ Part II

 $\begin{aligned} |T(j_0)| &= \frac{0}{T_{100}} = 0 \\ |T(j_{00})| &= \lim_{\omega \to \infty} |T(j_{00})| = 0 \\ \omega \to \infty \end{aligned}$ [70.5 point] [70.5 point]

$$\langle T(jo) = \frac{\pi}{2} - 0 = \frac{\pi}{2} \operatorname{rad} [\text{FD5 point}]$$

$$\langle T(jo) = \frac{\pi}{2} - \pi = -\frac{\pi}{2} \operatorname{rad} [\text{FD5 point}]$$

$$\langle T(jo) = \frac{\pi}{2} - \pi = -\frac{\pi}{2} \operatorname{rad} [\text{FD5 point}]$$

To compute the cutoff frequencies, we have to
asympte the maximum value of the gain function.
Note that
$$|T(jw)|$$
 and $(T(jw))^2$ achieve the
maximum at the same point, so we use the
latter (which is easier to derive),
 $100w^2$

$$100 + w^4 + 101 w^2$$

We derive it

 $\frac{200w(100+w^{4}+101w^{2})-100w^{2}(4w^{3}+202w)}{(100+w^{4}+101w^{2})^{2}}$ This vanishes when the noneator vanishes, i.e.,

 $0 = -200w^{5} + 20000w = 200w(-w^{4} + 100)$

i.e., w = 0 or $w^4 = 100$ $w^2 = \pm 10$ $\omega = 110$ So the maximum is $T_{\text{max}} = \frac{10.10}{10.10} = \frac{1010}{1010} = \frac{1010}{1100} = \frac{10}{11}$ Therefre, the cuttoff frequencies are found by Solving: $\frac{10 w_c}{100 + w_c^4 + 101 w_c^2} = \frac{17 (j w_c)}{17 (j w_c)} = \frac{1}{12} = \frac{10}{1172}$ $\frac{100 w_c^2}{100} = \frac{100}{100}$ $100 + w_{c}^{4} + 101 w_{c}^{2}$ 121.2 $242\omega_c^2 = 100 + \omega_c^4 + 101\omega_c^2$ W=Z $100 + w_c^4 - 141 w_c^2 = 0$ $z^2 - 141z + 100 = 0$ $z = \frac{141 \pm 141^2 - 4.100}{2} \approx 100$ 140.287

(herefre $W_c = 12 = 20.8442$ $W_c = 12 = 20.8442$ 11.843

(+1 point)

Part III $|T(gw)| = \frac{10w}{\sqrt{100+w^4+101w^2}}$

Part IV

The imput is $V_{m}(t) = 0.33 \cos(\frac{t}{6} - \pi) + crs(2t) + 0.25 \cos(30t + \frac{\pi}{3})$ We therefore compute $|T(j\frac{1}{6})| = 0.164 \quad \ll T(j\frac{1}{6}) \simeq 1.389 \text{ md}$ $|T(j2)| = 0.877 \quad \ll T(j2) = 0.266 \text{ md}$ $|T(j30)| = 0.31 \quad \ll T(j30) = -1.21 \text{ md}$

Therefore $V_{0}^{SS}(t) = 0.055 \operatorname{Grs}(\frac{t}{6} - 1.75) + 0.877 \operatorname{Grs}(2t + 0.266)$ $+ 0.079 \operatorname{Grs}(30t - 0.168)$ [+1 point]

Yes, the transfer finition reasonally accomptished the engineer's goals. The timevoying bone almost disappeared in the filtered sopral, and the moise was significantly reduced. Meanwhile, the signal with frequency

4 Part I		
We find the pole	s of the tonusfer	fruction.
$s^{2} + 11s + 10 = 0$	1/10	, _ 1
$S = -\frac{111112}{2}$	$\frac{1-4\cdot 0}{2} = \frac{-11 - 1}{2}$	= <-10
Therefore		[+1 point]
T_{c} 10s	10s	<u>s 10</u>
$(3) = \frac{1}{S^2 + MS + 10}$	(8+1) (5+10)	St1 St10 ([+1.psint]
Dud II		$\alpha_1 = 1$ $\alpha_2 = 10$
TAVEIL	1 /2	4
$f_1(s) = \frac{1}{3+1} = \frac{1}{3+1}$	$\frac{1}{1+\frac{1}{2}} = \frac{1}{10^4}$	1 (+1 point]
Told - 10 -	10/s 1	S10 2 1
1213)	1+10/s 104	$+\frac{1}{810}$ [+1 point]
We have manipul	ated the curre	enter/decurine
for of flese tong	for finitions to	make sme
we can design oi	vants that do	not auploy
moheture. We du	soon them next	as volkge

dividers.

Part IV To avoid loading, we could use a witage folloner. The gain of a VF is 1. [+1 point]

With this desgu, stype 2 does not had stage 1, accuse of the co-input impedance of the gramp, Also, stype 3 doep not had stope 2 because of the zero-ostpit impedance of the op-any. Theofre, the tomster friction of the interconnection is $T(s) = T_1(s) \cdot 1 \cdot T_2(s) = T_1(s) \cdot T_2(s)$ as the engineer had originally intended. This will make the output of the filtered

signal qual to our answer in Q3, Bot IV. (+1 point)

6.-- Part I

Justead, voug a voltige follower in tetwar workes one loading is avoided. Justices way, the output voltige of chye 1 is achally delivered to stype 2. We have used this in Q4. Part IV. [+1 extra] point]