1.- Part I

Under DC excitations, we know the capacitor behaves as an open cirent. Therefore, we have [+1point]

From the pritire, ne dedice that

$$
V_{c}(0)=V_{i}
$$

[+1 point]

Part II
Next, we trmusform the archit into the s-domain using a current sorce ts account for the mitial audition.

Part III
We use force tronsfinmation to redraw the trait as

We can now use current division t find the current through the R_{2}-impedance as

$$
i_{R_{2}}=\frac{1 / R_{2}}{\frac{1}{R_{2}}+\frac{1}{R_{1}}+s C}\left(\frac{v_{i}}{S R_{1}}+C v_{i}\right)
$$

Finally,

$$
\begin{aligned}
V_{0}(s)=R_{2} \cdot i_{2} & =\frac{R_{2} R_{1}}{R_{1}+R_{2}+R_{1} R_{2} C_{s}} \cdot \frac{r_{i}+C R_{1} v_{i} s}{s R_{1}} \\
& =\frac{R_{2}\left(1+C R_{1} s\right) r_{i}}{\left.\left(R_{1}+R_{2}+R_{1} R_{2} C s\right) s \text { [1 -1point }\right]}
\end{aligned}
$$

Part IV
Zero-state component corresponds t when the initial conditions are set to zero.

Therefore,

$$
\left(V_{0}\right)_{z s}(s)=\frac{R_{2} V_{i}}{\left(R_{1}+R_{2} \rightarrow R_{1} R_{2} C_{s}\right) s} \quad[+1 \text { point }]
$$

Zero-inport component corresponds to when the import is set to zees. Therefore,

$$
(V)_{z i}(s)=\frac{R_{1} R_{2} C V_{i}}{R_{1}+R_{2}+R_{1} R_{2} C_{s}} \quad[+1 \text { point }]
$$

Part V
Forced component corresponds to the poles of the import. In this case, the input has a pole at 0 . To answer the grestion, we use perineal functions t decompose $V_{0}^{\prime}(s)$ as

$$
V_{0}(s)=\frac{A}{S}+\frac{B}{S+\frac{R_{1}+R_{2}}{R_{1} R_{2} C}}
$$

We use the residue methane t find $A \ell B$.

$$
\begin{aligned}
& A=\lim _{S \rightarrow 0} s V_{0}(S)=\lim _{S \rightarrow 0} \frac{R_{2}\left(1+C R_{1} s\right) V_{i}}{R_{1}+R_{2}+R_{1} R_{2} C S}= \\
& =\frac{R_{2} v_{i}}{R_{1}+R_{2}} \\
& B=\lim _{s \rightarrow-\frac{R_{1}+R_{2}}{R_{1} R_{2} C}}\left(s+\frac{R+R_{2}}{R_{1} R_{2} C}\right) V_{2}(s)= \\
& =\lim _{s \rightarrow-\frac{-R_{1}+R_{2}}{R_{1} R_{2} C}} \frac{R_{2}\left(1+C R_{1} s\right) v_{i}}{S \cdot C R_{1} R_{2}}= \\
& =\frac{R_{2} r_{c}\left(1-\frac{C R_{1}\left(R_{1}+R_{2}\right)}{C_{1} R_{1} R_{2}}\right)}{-\frac{\left(R_{1}+R_{2}\right)}{R_{1} R_{2} C} R_{1} R_{2} C}=\frac{R_{2} r_{c}\left(+\frac{R_{1}}{R_{2}}\right)}{t\left(R_{1}+R_{2}\right)}= \\
& =\frac{R_{1} v_{i}}{R_{1}+R_{2}}
\end{aligned}
$$

Therefore, we conclude that

$$
\begin{aligned}
& \left(V_{0}\right)_{f_{r}}(s)=\frac{R_{2} V_{i}}{\left(R_{1}+R_{2}\right) s} \quad[+1 \text { point }] \\
& \left(V_{0}\right)_{\text {ur }}(s)=\frac{R_{1} v_{i}}{R_{1}+R_{2}} \cdot \frac{1}{S+\frac{R_{1}+R_{2}}{R_{1} C}}\left[+1_{\text {point }}\right]
\end{aligned}
$$

2.- Part I

Under DC excitation, we know the indretor behoves as a short archt. Therefore, we have

From the prithee we deduce that

$$
i_{L}(0)=i_{a}
$$

[+1 point]
Part II
We transform the arait int the S-doman, using a voltage source to represent the initial condition of the indictor.

Part III
We use the node laced provided in the plot afore. Right away, we here that

$$
V_{A}=V_{i}(s) ; V_{D}=L i_{a} \quad[+1 \text { point }]
$$

Because of ideal op -amp anditione, we know that the op-amp has infinite inport impedance, and hence R and $s L$ are in series with the voltage source $L_{i a}$. Therefore,

$$
V_{E}=\frac{R}{R+S L} L_{a} \quad[+1 \text { point } t]
$$

KCL a node (B)

$$
\frac{1}{R}\left(V_{B}-V_{A}\right)+\frac{1}{2 R}\left(V_{B}-V_{0}\right)+\frac{1}{R}\left(V_{B}-V_{C}\right)=0
$$

KCL a mode (c)

$$
\frac{1}{R}\left(V_{C}-V_{B}\right)+\frac{1}{R}\left(V_{C}-V_{0}\right)=0
$$

$[+1$ point $]$
Finally, we do not write KCL for the outport nide of the op -amp, relying instead on ideal op amp conditions.

$$
V_{C}=V_{E}
$$

Therefore, we hove

$$
V_{0}=2 V_{C}-V_{B}=\frac{2 R L i a}{R+S L}-V_{B}
$$

Substituting ink KCL for (B),

$$
\begin{aligned}
& \frac{1}{R}\left(V_{B}-V_{i}\right)+\frac{1}{2 R}\left(V_{B}+V_{B}-\frac{2 R L i a}{R+\sigma L}\right)+\frac{1}{R}\left(V_{B}-\frac{R L i a}{R+S L}\right)=0 \\
& V_{B}-V_{i}+V_{B}-\frac{R L i a}{R+s L}+V_{B}-\frac{R L i a}{R+\sigma L}=0 \\
& \text { Alance }
\end{aligned}
$$

Hence

$$
V_{B}=\frac{1}{3}\left(V_{i}+\frac{2 R L i a}{R+s L}\right)
$$

And therefore

$$
\begin{aligned}
V_{0}(s) & =\frac{2 R L_{i a}}{R+S L}-\frac{1}{3} V_{i}(s)-\frac{2}{3} \frac{R L_{i a}}{R+S L}= \\
& =-\frac{1}{3} V_{i}(s)+\frac{4}{3} \frac{R L i a}{R+s L}
\end{aligned}
$$

Part IV
Substituting the mires provided, we get

$$
\begin{aligned}
V_{0}(s) & =-\frac{1}{3} V_{i}(s)+\frac{4}{3} \cdot \frac{10^{2} \cdot 0^{-3} \cdot-10^{-2}}{10^{2}+s 10^{-3}}= \\
& =-\frac{1}{3}\left(\frac{1}{s}-\frac{1}{s+1}\right)+\frac{4}{3} \frac{1}{10^{s}+s}= \\
& \left.=-\frac{1}{3} \frac{1}{s}+\frac{1}{3} \frac{1}{s+1}+\frac{4}{3} \frac{1}{\left[+11 \rho^{s}\right.}\right]\left[\begin{array}{l}
\text { ont }]
\end{array}\right.
\end{aligned}
$$

Taking iwose Laplace transforms, wo get

$$
\begin{aligned}
v_{0}(t) & =\left(-\frac{1}{3}+\frac{1}{3} e^{-t}+\frac{4}{3} e^{-10^{5} t}\right) u(t) \\
& =-\frac{1}{3}\left(1-e^{-t}-4 e^{-10^{5} t}\right) u(t) \\
& {[+1 \text { point }] }
\end{aligned}
$$

3.. Part I

To compote the again and phase frevetions, we eonloate the trouser function at $s=j w$,

$$
T(j \omega)=\frac{10 j \omega}{-\omega^{2}+11 j \omega+10}
$$

Therefore

$$
\begin{aligned}
& |T / j \omega\rangle \left\lvert\,=\frac{10 \omega}{\sqrt{\left(10-\omega^{2}\right)^{2}+121 \omega^{2}}}=\frac{10 \omega}{\sqrt{100+\omega^{4}+101 \omega^{2}}}\left[\begin{array}{l}
+1 \text { point }]
\end{array}\right.\right. \\
& \left\langle T(j \omega)=\frac{\pi}{2}-\arctan \frac{11 \omega}{10-\omega^{2}}[+1 \text { point }]\right.
\end{aligned}
$$

Part II

$$
\begin{array}{ll}
|T(j 0)|=\frac{0}{\sqrt{100}}=0 & \text { [t0.5 point] } \\
|T(j \infty)|=\lim _{\omega \rightarrow \infty}|T(j \omega)|=0 & {[+0.5 \text { point }]}
\end{array}
$$

$$
\begin{aligned}
& \angle T(j O)=\frac{\pi}{2}-0=\frac{\pi}{2} \mathrm{rad} \quad[005 \text { point }] \\
& \angle T(j \infty)=\frac{\pi}{2}-\pi=-\frac{\pi}{2} \text { rd } \quad[005 \text { point }]
\end{aligned}
$$

To compute the cutoff fregrencies, we have ts compote the maximum value of the gan function. Note that $|T(j \omega)|$ and $|T(j \omega)|^{2}$ achieve the maximum at the same point, so we use the latter (which is easier to derive),

$$
\frac{100 w^{2}}{100+w^{4}+101 w^{2}}
$$

We derive it

$$
\frac{200 w\left(100+w^{4}+101 \omega^{2}\right)-100 w^{2}\left(4 w^{3}+202 \omega\right)}{\left(100+w^{4}+101 w^{2}\right)^{2}}
$$

This vanishes when the urmerator vanishes, i.e.,

$$
0=-200 w^{5}+20000 w=200 w\left(-w^{4}+100\right)
$$

i.e., $w=0$ or

$$
\begin{aligned}
& w^{4}=100 \\
& w^{2}= \pm 10 \\
& w=\sqrt{10}
\end{aligned}
$$

So the maximum is

$$
\left.T_{\text {max }}=\frac{10 \cdot \sqrt{10}}{\sqrt{100+100+101 \cdot 10}}=\frac{10 \sqrt{10}}{19+1 \text { point }]}=\frac{10}{19}\right]
$$

Therefore, the cuttoff freprencies are found by solving:

$$
\begin{aligned}
& \frac{10 \omega_{c}}{\sqrt{100+\omega_{c}^{4}+101 \omega_{c}^{2}}}=\sqrt{T\left(j \omega_{c}\right) \left\lvert\,=\frac{T \max }{\sqrt{2}}\right.}=\frac{10}{11 \sqrt{2}} \\
& \frac{100 \omega_{c}^{2}}{100+\omega_{c}^{4}+201 \omega_{c}^{2}}=\frac{100}{121 \cdot 2} \\
& 242 \omega_{c}^{2}=100+\omega_{c}^{4}+101 \omega_{c}^{2} \\
& z^{2}-141 z+100=0 \\
& z=\frac{141 \pm \sqrt{141^{2}-4.100}}{2}=\left\{\begin{array}{l}
0.7128 \\
140.287
\end{array}\right.
\end{aligned}
$$

Therefore

$$
w_{c}=\sqrt{z}=\left\{\begin{array}{l}
0.8442 \\
11.843
\end{array} \quad[+1 \text { point }]\right.
$$

Part III

$$
|T(\hat{j} \omega)|=\frac{10 \omega}{\sqrt{100+\omega^{4}+109 \omega^{2}}}
$$

For $\omega \ll 1,|T(j \omega)| \approx \frac{10 \omega}{10}=\omega$
Fr $\omega \gg 1,|(j \omega)|=\frac{10 \omega}{\omega^{2}}=\frac{10}{\omega}$
Slletchs can be done in linear or Legainthmic scale.

Bode Diagram

This is a bandpass filter. [+1 point]

Part IV
The imput is

$$
V_{m}(t)=0.33 \cos \left(\frac{t}{6}-\pi\right)+\operatorname{crs}(2 t)+0.25 \cos \left(30 t+\frac{\pi}{3}\right)
$$

We therefore comporte

$$
\begin{array}{ll}
\left|T\left(j \frac{1}{6}\right)\right| \simeq 0.164 & \alpha T\left(j \frac{1}{6}\right) \simeq 1.389 \mathrm{ad} \\
|T(j 2)| \simeq 0.877 & \alpha T(j 2)=0.266 \mathrm{ad} \\
|T(j 30)|=0.31 & \alpha T(j 30)=-1.21 \mathrm{ad}
\end{array}
$$

Therefure

$$
\begin{aligned}
V_{0}^{S}(t)= & 0.055 \cos \left(\frac{t}{6}-1.75\right)+0.877 \cos (2 t+0.266) \\
& +0.079 \cos (30 t-0.168) \quad[+1 \text { point }]
\end{aligned}
$$

Yes, the trangfer foretion reasorasly accomphithed the engineer's gonls. The tineraying bins almust disappeared in the filtered sopual, and the urise was sijuificantly redrced. Meauwhile, the sigual with frequenge
$2 \mathrm{nd} / \mathrm{s}$ remained shrug. $[+1$ point $]$

original signal
 filtered sizual
$V_{0}^{S S}(t)$
4.- Part I

We find the poles of the transfer friction.

$$
\begin{aligned}
& s^{2}+11 s+10=0 \\
& s=\frac{-11 \pm \sqrt{121-4 \cdot 10}}{2}=\frac{-11 \pm 9}{2}=\left\{\begin{array}{l}
-1 \\
-10
\end{array}\right.
\end{aligned}
$$

Therefore
[+1 point]

$$
\begin{aligned}
& T(s)=\frac{10 s}{s^{2}+11 s+10}=\frac{10 s}{(s+1)(s+10)}=\frac{s}{s+1} \cdot \frac{10}{s+10} \\
& \\
& \\
& \\
& \alpha_{1}=1[+1 \text { paint II } \\
&
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}(\delta)=\frac{S}{S+1}=\frac{1}{1+\frac{1}{S}}=\frac{10^{4}}{10^{4}+\frac{1}{S 10^{-4}}}[+1 \text { point }] \\
& T_{2}(s)=\frac{10}{S+10}=\frac{10 / \mathrm{S}}{1+10 / \mathrm{S}}=\frac{1 / \text { si }}{10^{4}+\frac{1}{s / 0^{-5}}[+1 \text { point }]}
\end{aligned}
$$

We have manipulated the curmeator/dewnminetor of share tonusfer fonetions t wake sore we can design arcuts that do not auploy inductors. We design them next as vilkge dividers.

part III
No natter how we connect the carats in port II, there is leching. [+1 point]

This means thar the actinal truugfer function for the inferconcuetion is not $T_{1}(s) \cdot T_{2}(S)$. This explains why, after filtering $v_{n}(t)$ the output is not exactly the same as the one we comprited in Q3. Tart IV.

Part N
To avoid landing, we could use a withe follower. The gain of a VF is 1.

with this desire, stage 2 does not lad stage 1, because of the ∞-input mupedance of the op-aup. Also, stage 3 awes not had stooge 2 because of the zero-ortprt impedance of the op-amp. Therefore, the transfer function of the interconnection is

$$
T(s)=T_{1}(s) \cdot 1 \cdot T_{2}(s)=T_{1}(s) \cdot T_{2}(s)
$$

as the engineer hall originally intended. This will make the output of the filtered signal annul to or answer in Q3. Prot IV. $[+1$ point $]$

Input Signal 1

Filter Output for Signal 1
Gain $=0.5$ and Phase $=0$

Filter Output for Signal 2
Gain $=0.8$ and Phase $=0$

Part 11
It is not a low-pass fitter, because the signal with smaller frequency he o a significantly smaller gu than the signal with hither [+0.5 extras point] It cold be a high-pass filter. It could also be a bandpars or a bandstorp filter.
$[+0.5$ extra point] $]$
6.. . Part I

This is a voltage follonce. We therefore kero that
$V_{0}(t)=V_{i}(t)$ (the gain is 1) [ty extra pout]
Part II
The grestion ale why using

instead of using simply

The answer is to avoid lading. If stage 1 doses wot hove 0 outport impedance and stage 2 dives not have ∞ ingot impedance, then simply asnneeting the stages creates loading.

Iustead, using a volinge follower in-betwee marles sore landing is avorided. Tu this way, the oufput volize of ctage 1 is achally dehvered to stage 2. We have used this in Q4. Part IV. $\left[\begin{array}{c}1 \text { extran } \\ \text { point }\end{array}\right]$

