1.- Part I

To use node-voltage analysis, we must take care of the presence of the voltage source vising one of the three methods discussed in class:

1) source transformation
2) grounding a mode conveniently
3) sopernode

We cannot use 1) because the voltage ponce is not in series with a resistor (even if it was, the statement of the grestion explicitly oles out modifying the arrvit, whin also discards force transformation. 2) is instead applicable, because the ground has been ahosen in a arvenient way. One cold also vie 3) (because it is always applicable) but that mould overasuplicate things given where

ground is located.
[+1 point]

So we settle on using method 2, which gives

$$
V_{A}=V_{S}
$$

[+1 print]
And we unite KCL eq for modes B, C, DD. We do it by inspection, which is faster.

$$
\Rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & G_{4} & 0 & -G_{4} \\
-G_{1} & 0 & G_{1}+G_{2}+G_{3}-G_{3} \\
0 & -G_{4} & -G_{3} & G_{3}+t_{4}+t_{5}
\end{array}\right)\left(\begin{array}{c}
V_{A} \\
V_{B} \\
V_{C} \\
\text { are worth } \\
\text { art pouts } \\
V_{D}
\end{array}\right)=\left(\begin{array}{c}
V_{S} \\
-i_{S} \\
0 \\
0
\end{array}\right)
$$

(Here, we have used the shurf-hand volition $G_{i}=\frac{1}{R_{i}}$)
This gives 4 eqs in 4 unknowns, unitten in matrix form. If you siescitite $V_{A}=V_{S}$ in the other 3 es, then you can also express this as 3 es in 3 unknowns.

$$
\text { al } \begin{aligned}
& 3 \text { eggs in } 3 \text { unknowns. } \\
& \rightarrow\left(\begin{array}{ccc}
G_{4} & 0 & -G_{4} \\
0 & G_{4}+G_{2}+G_{3} & -G_{3} \\
-G_{4} & -G_{3} & G_{3}+G_{4}+G_{5}
\end{array}\right)
\end{aligned}
$$

$$
\left.\begin{array}{c}
V_{B} \\
V_{C} \\
V_{D}
\end{array}\right)=\left(\begin{array}{c}
-i_{S} \\
G_{1} V_{S} \\
0
\end{array}\right)
$$

Part II
In terms of the node voltages, we have

$$
\begin{array}{ll}
V_{x}=V_{c} & {[+1 \text { point }]} \\
i_{x}=G_{q}\left(V_{A}-V_{C}\right) & {[+1 \text { point }]}
\end{array}
$$

Part III
The resistor R_{4} is in series with the current source. From what we know from class, a current source in series with a resistor is equivalent, from the point of vier of the rest of the amin, to post lounging the corrent source. This is depicted in the diagram

$$
[+1 \text { point }]
$$

$$
i=i_{S}
$$

This means that, if the technician replaced the resistor $R_{4} M$ or aran't by a short armpit, then nothing changed in the rest of the armet, so the valves of r_{x} and i_{x} remained the same.

$$
[+1 \text { point }]
$$

2._ Part I

We turn off all the sources in the arrait and obtain the arait below

[$+0,5$ point $]$
where the voltage survce gets replaced by a short cirait, and the current sorrce by an open armit. [00.5 point] Next, we use association of resistors to simplify it forther. Note that R_{1} and R_{2} are in parallel, so

Moreover, there is no current going through R_{4} (because of the open arruit), so it is as if that resistor was not there.

[to. 5 point]
$R_{1} \| R_{2}$ and R_{3} are in series, so we simplify as

[to. 5 point]

Finally, the two remaining resistors are in parallel, so so

$$
\begin{array}{r}
R_{E Q}=\left(R_{1} \| R_{2}+R_{3}\right) \| R_{5}= \\
=\frac{R_{5} \cdot\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}+R_{3}\right)}{R_{5}+R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}= \tag{B}\\
=\frac{R_{5} \cdot\left(R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)\right)}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{5}\right)+R_{1} R_{2}[+0.5 \text { point }}
\end{array}
$$

pare III

$$
=3 \Omega
$$

We turn off the current source, substituting it by an open cirant as
 [to. 5 point]

Since there is no current flowing through the resistor R_{4}, we redraw this al

[to. 5 point]
Next, we vase source transformation to plot

[to. spout]
Now, we confine the two resistors in parallel,

(A)

And use one more source tminsforciation, [Forspent]

Finally, we see that the open crit village is the wiling drop seen by the resistor R_{5}, which can be computed by voltage division

$$
\begin{aligned}
\begin{aligned}
\left(V_{A B}\right)_{1}=\frac{R_{5}}{R_{3}+R_{5}+R_{1} \| R_{2}} & \cdot \frac{R_{1} \| R_{2}}{R_{1}} V_{S}=\frac{R_{2} R_{S}}{\left(R_{3}+R_{S}\right)\left(R_{1}+R_{2}\right)+R_{1} R_{2}} \cdot V_{S} \\
& =2 \mathrm{~V} \quad \text { [+1 point] }
\end{aligned} \\
\text { Tat III }
\end{aligned}
$$

We turn off the voltage source, substituting it by a closed aranit as

$$
[+0.5 p o n t]
$$

Since the resister R_{4} is in series with the current source, we can simply redraw r the eguinlent arait

[t0.5pont]

We use the fact that R_{1} and R_{2} are in parallel to reclraw the arrant as

[00.5 pout]
Next, we comisine the resistors in series,

[+0.5 point]
Finally, we can use arrent division ts obtain

$$
\begin{aligned}
\left(V_{A B}\right. & =R_{5} \cdot \frac{1 / R_{5}}{1 / R_{5}+\frac{1}{R_{1} \| R_{2}+R_{3}}}(-i s)= \\
& =-\frac{\left(R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)\right) R_{5}}{R_{1} R_{2}+\left(R_{1}+R_{2}\right)\left(R_{3}+R_{5}\right)} i_{S}=3 \mathrm{~V}
\end{aligned}
$$

Part IV
By superposition, the open circuit village as seen from terminals (A) and (B) is the som of the answers of Part II (current source off) and Part TI I (voltage source off).
[+0.5 pont]

Therefore,

$$
\begin{aligned}
& V_{T}=V_{\partial C}=\left(V_{A B}\right)_{1}+\left(V_{A B}\right)_{2}= \\
& =\frac{R_{2} R_{5}}{\left(R_{3}+R_{5}\right)\left(R_{1}+R_{2}\right)+R_{1} R_{2}} \cdot V_{S}-\frac{\left(R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right) R_{5}\right.}{R_{1} R_{2}+\left(R_{1}+R_{2}\right)\left(R_{3}+R_{5}\right)} i_{S} \\
& =R_{5} \cdot \frac{R_{2} V_{S}-\left(R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)\right) i_{S}}{R_{1} R_{2}+\left(R_{1}+R_{2}\right)\left(R_{3}+R_{5}\right)}=5 \mathrm{~V}
\end{aligned}
$$

From Port I,

$$
R_{T}=R_{E Q}=\frac{R_{5} \cdot\left(R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)\right)}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{5}\right)+R_{1} R_{2}}=3 \Omega
$$

Therefre, the Theveun equialeut is

[+0.5pont]

Part V
We comporte nomerical valves for the Theveun egrimbut (in care strdents hove not alreedy comprited

$$
\begin{aligned}
V_{T} & =R_{5} \cdot \frac{R_{2} V_{S}-\left(R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)\right) \text { is }}{R_{1} R_{2}+\left(R_{1}+R_{2}\right)\left(R_{3}+R_{5}\right)}=\begin{array}{c}
\text { Furow } \\
\text { asore })
\end{array} \\
& =5 \frac{5 \cdot 10-(25+50)(-1)}{25+100}=5 \mathrm{~V} \\
R_{T} & =\frac{R_{5} \cdot\left(R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)\right)}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{S}\right)+R_{1} R_{2}}= \\
& =\frac{5(25+5(10))}{100+25}=3 \Omega
\end{aligned}
$$

Therefore, we heve
$5 V \pm$

$$
\begin{gathered}
V=\frac{12}{12+3} \cdot 5=0.8 \cdot 5 \\
=4 \mathrm{~V} \\
{\left[\begin{array}{c}
+1 \text { extrx } \\
\text { point }
\end{array}\right]}
\end{gathered}
$$

The power provided it the resistor is then

$$
p=\frac{1}{R} v^{2}=\frac{1}{12} \cdot 4^{2}=1.38 \mathrm{~W}
$$

This means that the minimom power anting of the 12Ω-resistor has to be 1.33W。
$[+1$ extra $]$
point $]$
3.- The uny t reed the specification of the real-curtd power supply (rwps) is: provide 24 V up to IA current. So, for $R=100 \Omega$, we here

$$
i=\frac{24}{100}=0.24 \mathrm{~A}<1 \mathrm{~A} \text {, which withire } \quad\left[\begin{array}{l}
\text { wo.5 pornks }] \text { peee. }
\end{array}\right.
$$

For $R=10 \Omega$, we heve

$$
i=\frac{24}{10}=2.4 A>1 A \text {, out of spec }\left[\begin{array}{c}
\text { to. } \\
\text { poilte }]
\end{array}\right.
$$

For $R=1 \Omega$, we here
$i=\frac{24}{1}=24 \mathrm{~A}>1 \mathrm{~A}$, out of spee $\left[\begin{array}{c}{[0.5} \\ \text { pointe] }\end{array}\right]$
So the tasle of outfut voltage from the rups looks like
[+05ponte] ead

R	volhac vifout
100Ω	24 V
10Ω	less tham 24V, oV, or broteen
1Ω	less them 24V, oV, or borkenk

