MAE40-Linear Circuits - Fall 23 - Section A00
 Midterm \#2, November 14

Instructions

(i) The exam is open book. You may use your class notes and textbook.
(ii) The exam has 3 questions for a total of 23 points and 4 bonus points.
(iii) You have from 11:00am to 12:20pm to do the exam - but should require less time!
(iv) You can use a calculator with no communication capabilities.
(v) In your responses, clearly articulate your reasoning, and properly justify the steps.
(vi) Important: start each part below on a separate page, use only one side, and write your name \& PID at the top of each page.
Good luck!

Figure 1: Circuit for Question 1.

1. Mesh-current analysis with dependent sources

For the circuit in Figure 1,
Part I: [4 points] Use mesh-current analysis to find the open-circuit voltage as seen from terminals (A) and (B) (use the labels provided and notice the presence of the dependent source).
Part II: [5 points] Connect the terminals (A) and (B) and find the short-circuit current, using again mesh current analysis.
Part III: [1 point] Given your answers to Parts I and II, can you tell what the Thevenin equivalent of this circuit is?
Part IV [+ Extra 1 point] If, instead of short-circuiting the circuit as in Part II, you turn off the current source in the circuit of Figure 1, what is the equivalent resistance? Is this the same as R_{T} in Part III? Why?

2. OpAmp circuit analysis and design

Part I: [5 points] Use node-voltage analysis to determine which one of the following expressions of the output voltage in the circuit in Figure 2 is correct;

$$
v_{o}=-\frac{2}{3} v_{S} \quad v_{o}=-\frac{v_{S}}{3} \quad v_{o}=-\frac{v_{S}}{2}
$$

Figure 2: Circuit for Question 2.

Part II: [2 points] Under ideal OpAmp conditions, if you connect a load resistor R_{L} between the output node and ground, will the output voltage change? Why?
Part III: [2 points] Let $R_{L}=10 \Omega$. An engineer used a voltage source with $v_{S}=9 \mathrm{~V}$ and measured the power consumed by the load as $P_{L}=0.9 \mathrm{~W}$, as expected. However, when the engineer connected a voltage source with $v_{S}=15 \mathrm{~V}$, the power consumed by the load was $P_{L}=1.6 \mathrm{~W}$. How do you explain this? Can you deduce what the external power supply $-v_{\mathrm{CC}}$ of the Op-Amp is?
Part IV: [+ Extra 1 point] Design your own circuit, using only basic OpAmp building blocks, two resistors with value R and 1 resistor with value $2 R$, that generates the same output voltage as the circuit in Figure 2.

Figure 3: Circuit for Question 3.

3. Force sensing resistor

A Force Sensing Resistor (FSR) is a low cost and compact force sensor. The FSR behaves as a variable resistor whose value is a function of the applied force: R_{FSR} drops as force is applied. Figure 3 shows an OpAmp circuit with an FSR and a drive voltage v_{d}.

Part I: [2 points] Calculate the output voltage as a function of R_{FSR} and R when $v_{d}=-5 \mathrm{~V}$.
Part II: [2 points] What would happen to v_{o} if $v_{d}=0$? Would this be a good way to measure the force applied on the FSR? Why?
Part III: [+ Extra 2 points] The characteristic of FSR is that the resistance does not vary linearly with applied load. Rather $R_{\mathrm{FSR}}=\frac{a}{b^{F}}$, where $a>0, b>1$, and F is the magnitude of the applied force. Do the following to explain the benefit of using the OpAmp circuit shown in Figure 3:

- Freehand sketch R_{FSR} vs F and show the slope for a high value of R_{FSR} that characterizes the change in R_{FSR} for a small change in F;
- For $v_{d}=-5 V$, freehand sketch v_{o} vs R_{FSR} and show the slope for a high value of R_{FSR} that characterizes the change in v_{o} for a small change in R_{FSR};
- Describe the effect of using the OpAmp circuit to generate the voltage v_{o} to represent the applied force (rather than using R_{FSR} directly).

