MAE40 - Linear Circuits - Fall 23 - Section A00 Midterm #2, November 14

Instructions

- (i) The exam is open book. You may use your class notes and textbook.
- (ii) The exam has 3 questions for a total of 23 points and 4 bonus points.
- (iii) You have from 11:00am to 12:20pm to do the exam but should require less time!
- (iv) You can use a calculator with no communication capabilities.
- (v) In your responses, clearly articulate your reasoning, and properly justify the steps.
- (vi) **Important:** start each part below on a separate page, use only one side, and write your name & PID at the top of each page.

Good luck!

Figure 1: Circuit for Question 1.

1. Mesh-current analysis with dependent sources

For the circuit in Figure 1,

- **Part I:** [4 points] Use mesh-current analysis to find the open-circuit voltage as seen from terminals (A) and (B) (use the labels provided and notice the presence of the dependent source).
- **Part II:** [5 points] Connect the terminals (A) and (B) and find the short-circuit current, using again mesh current analysis.
- **Part III:** [1 point] Given your answers to Parts I and II, can you tell what the Thevenin equivalent of this circuit is?
- **Part IV** [+ Extra 1 point] If, instead of short-circuiting the circuit as in Part II, you turn off the current source in the circuit of Figure 1, what is the equivalent resistance? Is this the same as R_T in Part III? Why?

2. OpAmp circuit analysis and design

Part I: [5 points] Use node-voltage analysis to determine which one of the following expressions of the output voltage in the circuit in Figure 2 is correct;

$$v_o = -\frac{2}{3}v_S$$
 $v_o = -\frac{v_S}{3}$ $v_o = -\frac{v_S}{2}$

Figure 2: Circuit for Question 2.

- **Part II:** [2 points] Under ideal OpAmp conditions, if you connect a load resistor R_L between the output node and ground, will the output voltage change? Why?
- **Part III:** [2 points] Let $R_L = 10 \Omega$. An engineer used a voltage source with $v_S = 9V$ and measured the power consumed by the load as $P_L = 0.9W$, as expected. However, when the engineer connected a voltage source with $v_S = 15V$, the power consumed by the load was $P_L = 1.6W$. How do you explain this? Can you deduce what the external power supply $-v_{CC}$ of the Op-Amp is?
- **Part IV:** [+ Extra 1 point] Design your own circuit, using only basic OpAmp building blocks, two resistors with value R and 1 resistor with value 2R, that generates the same output voltage as the circuit in Figure 2.

Figure 3: Circuit for Question 3.

3. Force sensing resistor

A Force Sensing Resistor (FSR) is a low cost and compact force sensor. The FSR behaves as a variable resistor whose value is a function of the applied force: R_{FSR} drops as force is applied. Figure 3 shows an OpAmp circuit with an FSR and a drive voltage v_d .

Part I: [2 points] Calculate the output voltage as a function of R_{FSR} and R when $v_d = -5V$.

- **Part II:** [2 points] What would happen to v_o if $v_d = 0$? Would this be a good way to measure the force applied on the FSR? Why?
- **Part III:** [+ Extra 2 points] The characteristic of FSR is that the resistance does not vary linearly with applied load. Rather $R_{\text{FSR}} = \frac{a}{b^F}$, where a > 0, b > 1, and F is the magnitude of the applied force. Do the following to explain the benefit of using the OpAmp circuit shown in Figure 3:
 - Freehand sketch *R*_{FSR} vs *F* and show the slope for a high value of *R*_{FSR} that characterizes the change in *R*_{FSR} for a small change in *F*;
 - For $v_d = -5V$, freehand sketch v_o vs R_{FSR} and show the slope for a high value of R_{FSR} that characterizes the change in v_o for a small change in R_{FSR} ;
 - Describe the effect of using the OpAmp circuit to generate the voltage v_o to represent the applied force (rather than using R_{FSR} directly).