Equivalent Circuits \& Reduction (T\&R Chap 2,3)

Circuit Equivalence

Two circuits are equivalent if they have the same $i-v$ characteristics at a specified pair of terminals

Terminal $=$ external connection to two nodes $=$ port

> Our aim is to simplify analysis replacing complicated subcircuits by simpler equivalent circuits

Example

Association of resistors

Equivalent Circuits \& Reduction (T\&R Chap 2,3)

Resistors in Series

Resistors in Parallel

$$
R_{E Q}=R_{1}+R_{2}
$$

$$
R_{E Q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

$$
=(\mathrm{A})
$$

Example 2-11 (T\&R, 5th ed, p. 34)

Consider the circuit

Compute equivalent ccts

 from $A B$ and from CD

$$
\begin{aligned}
& R_{E Q_{C D}}=R_{2} \| R_{3}=\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1}=\frac{R_{2} R_{3}}{R_{2}+R_{3}} \\
& R_{E Q_{A B}}=R_{1}+R_{2} \| R_{3}=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}
\end{aligned}
$$

Example 2-10 (T\&R, 5th ed, p. 31) Revisited

Can you find i_{A} ?
All you need to know is

$$
v_{A}=30 \mathrm{~V}
$$

Example 2-10 (T\&R, 5th ed, p. 31) Revisited

Can you find i_{A} ?
All you need to know is

$$
v_{A}=30 \mathrm{~V}
$$

Answer

$$
i_{A}=-i_{R}=-30 / 150=-200 m A
$$

Equivalent ccts

Equivalent ccts for resistive networks are familiar reductions of parallel and series connections
The equivalent cct depends on the port
From an external view the cct could be replaced by its equivalent
The internal cct variables are now unavailable How would you compute them?
Could we substitute for the cct below?

Equivalent sources

$i-v$ relationships determine equivalence

$$
i=\frac{v_{S}}{R}-\frac{v}{R}
$$

$$
v=\left(i_{S} R\right)-R i
$$

Equivalent Sources (cntd)

$v=v_{S}$

Equivalent Sources (cntd)

Equivalent Sources (cntd)

Only works if $v_{1}=v_{2}$ then $v_{S}=v_{1}=v_{2}$

Only works if $i_{1}=i_{2}$ then $i_{S}=i_{1}=i_{2}$

Circuit Reduction

For ladder networks

Reduce complexity by successively replacing elements by their equivalents

What happens with three elements in series or in parallel?

They are all equivalent We can commute elements

MAE40 Linear Circuits

T\&R, 5th Ed, Example 2-22 p 49

Find v

Reduce the left end

$$
v=2.5 \mathrm{~V}
$$

$$
\begin{aligned}
& \xrightarrow{i} \quad \text { Voltage \& Current Dividers } \\
& v_{S} R_{\text {total }}=R_{1}+R_{2}+R_{3}
\end{aligned}
$$

$$
G_{i}=\frac{1}{R_{i}}
$$

MAE40 Linear Circuits

Voltage Dividers

Often we use a voltage divider to provide an input voltage to a cct element When would this work?

> When the "rest of cct" does not draw much current compared to R_{2} Why is this?
> What is it asking of the equivalent of the rest of cct?

Note that this is a very common circuit used to
"bias" a transistor to an
operating voltage

Thévenin Equivalent Ccts

Thévenin's Theorem

If the source cct in a two-terminal interface is linear, then the interface signals v and i do not change when the source cct is replaced by its Thévenin equivalent
Note: nobody says the load must be linear!
Thévenin Equivalent Circuit v_{T} is the open-cct voltage of source R_{T} is evaluated from short-cct current

Thévenin' s Theorem Proof

Linearity of the Source cct is the key - superposition
"Linear cct response to multiple sources is the sum of the responses to each source"

Hook up a test current source to cct $i_{\text {test }}$ yields voltage $v_{\text {test }}$

Part I, $i_{\text {test }, 1}=0$ but i and v sources in Source cct left ON then $v_{\text {test }, 1}=v_{o c}=v_{T}$

Part II, $i_{\text {test }, 2 \neq 0}$ and sources left OFF in Source cct then $v_{\text {test }, 2}=-R_{T} i_{\text {test }, 2}$

By linearity of the Source cct $v_{\text {test }}$ is the sum of these parts for any choice of $i_{\text {test }}$

This establishes the $i-v$ relationship for any load cct

Exercise from midterm, Fall 11

1. Turn off all the sources in the circuit and find the equivalent resistance as seen from terminals A-B (10 Ω)
2. Find the Thévenin equivalent as seen from terminals $\mathrm{A}-\mathrm{B}(\mathbf{- 1 0 V})$
3. Find the power absorbed by a 40Ω resistor that is connected to terminals A-B (1.6W)

Norton Equivalent Ccts

Norton's Theorem

If the source cct in a two-terminal interface is linear, then the interface signals v and i do not change when the source cct is replaced by its Norton equivalent

Norton Equivalent Circuit i_{N} is the short-cct current
R_{T} is evaluated from open-cct voltage

Example 3-16 p. 110 T\&R, 5th ed

Find the Thévenin and Norton equivalent ccts of

Find the voltage, current and power if load is 50Ω

Answer: $v_{T}=-30 \mathrm{~V} ; i_{N}=-417 \mathrm{~mA} ; R_{N}=R_{T}=72 \Omega$
$V=-12.3 \mathrm{~V} ; i=-246 \mathrm{~mA} ; p=3.03 \mathrm{~W}$

